Learning based hashing methods have attracted considerable attention due to their ability to greatly increase the scale at which existing algorithms may operate. Most of these methods are designed to generate binary codes that preserve the Euclidean distance in the original space. Manifold learning techniques, in contrast, are better able to model the intrinsic structure embedded in the original highdimensional data. The complexity of these models, and the problems with out-of-sample data, have previously rendered them unsuitable for application to large-scale embedding, however.In this work, we consider how to learn compact binary embeddings on their intrinsic manifolds. In order to address the above-mentioned difficulties, we describe an efficient, inductive solution to the out-of-sample data problem, and a process by which non-parametric manifold learning may be used as the basis of a hashing method. Our proposed approach thus allows the development of a range of new hashing techniques exploiting the flexibility of the wide variety of manifold learning approaches available. We particularly show that hashing on the basis of t-SNE [29] outperforms state-of-the-art hashing methods on large-scale benchmark datasets, and is very effective for image classification with very short code lengths. * F. Shen's contribution was made when he was visiting University of Adelaide.† Appearing in IEEE Conf. Computer Vision and Pattern Recognition, 2013. Correspondence should be addressed to C. Shen.
Understanding the interactions between proteins and ligands is critical for protein function annotations and drug discovery. We report a new sequence-based template-free predictor (TargetATPsite) to identify the Adenosine-5'-triphosphate (ATP) binding sites with machine-learning approaches. Two steps are implemented in TargetATPsite: binding residues and pockets predictions, respectively. To predict the binding residues, a novel image sparse representation technique is proposed to encode residue evolution information treated as the input features. An ensemble classifier constructed based on support vector machines (SVM) from multiple random under-samplings is used as the prediction model, which is effective for dealing with imbalance phenomenon between the positive and negative training samples. Compared with the existing ATP-specific sequence-based predictors, TargetATPsite is featured by the second step of possessing the capability of further identifying the binding pockets from the predicted binding residues through a spatial clustering algorithm. Experimental results on three benchmark datasets demonstrate the efficacy of TargetATPsite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.