The Curvature Scale Space (CSS) technique is considered to be a modern tool in image processing and computer vision. Direct Curvature Scale Space (DCSS) is defined as the CSS that results from convolving the curvature of a planar curve with a Gaussian kernel directly. In this paper we present a theoretical analysis of DCSS in detecting corners on planar curves. The scale space behavior of isolated single and double corner models is investigated and a number of model properties are specified which enable us to transform a DCSS image into a tree organization and, so that corners can be detected in a multiscale sense. To overcome the sensitivity of DCSS to noise, a hybrid strategy to apply CSS and DCSS is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.