Libidibia ferrea (juca) is a plant belonging to the Fabaceae (Leguminosae) family, whose antioxidant activity has been widely described in the literature. We evaluated this parameter of Aqueous ethanol extract (AE), ethyl acetate (ACO), chloroform (CLO) and hexane (HEX) extracts of L. ferrea. We then tested the most active extract for its toxicity and ability to inhibit migratory activity in the ACP02 gastric adenocarcinoma cell line in vitro. The AE and ACO extracts both had antioxidant activity, the AE extract showing greater potential. This may reflect that both extracts contained phenolic compounds. Although AE extract showed no cytotoxic, mutagenic or genotoxic effect, it altered cell morphology and migration activity. Analysis of apoptosis/necrosis indicated that this parameter does not appear to account for the apparent ability of AE to inhibit cancer cell migration. We speculate that the morphological changes in AE-treated cells could be due to cytoskeleton alterations related to the presence of myo-inositol in AE extract. Together, our results demonstrate this extract of L. ferrea can act as an exogenous antioxidant and might prove useful in efforts to fight secondary tumors.
Andiroba (Carapa guianensis Aubl) is an Amazonian plant whose oil has been widely used in traditional medicine for various purposes, including anti‐inflammation. Research reports indicate that the oil can confer antitumor activity due to the presence of fatty acids, which can directly influence cell death mechanisms. Thus, andiroba oil (AO) has gained interest for its potential to be used in antineoplastic therapies. Here, we report an in vitro analysis of the cytotoxic and mutagenic potential of AO in the gastric cancer cell line, ACP02. Cell survival was assessed by the MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] assay, differential staining with ethidium bromide and acridine orange assessed apoptosis‐necrosis, and mutagenesis was assessed by the micronucleus test. The apolar oil was first diluted in 0.1% dimethyl sulfoxide (DMSO) and then further diluted to six concentrations (0.01, 0.1, 1, 10 and 100 μg/mL and 1 mg/mL) in RPMI medium. Controls included RPMI alone (negative control) and 0.1% DMSO diluted in medium (vehicle control). The MTT test showed that AO significantly reduced cell viability (P < .05) only when the highest tested concentration was applied for 48 hours. The apoptosis/necrosis test showed that the highest concentration of AO induced cell death by apoptosis at 24 and 48 hours. There was no statistically significant increase in the frequency of micronuclei. The ability of the AO to decrease the viability of ACP02 cells via apoptosis, without exerting mutagenic effects, suggests that the oil could be useful as an alternative therapeutic agent for primary tumors of stomach cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.