Background Protein–peptide interactions play a fundamental role in a wide variety of biological processes, such as cell signaling, regulatory networks, immune responses, and enzyme inhibition. Peptides are characterized by low toxicity and small interface areas; therefore, they are good targets for therapeutic strategies, rational drug planning and protein inhibition. Approximately 10% of the ethical pharmaceutical market is protein/peptide-based. Furthermore, it is estimated that 40% of protein interactions are mediated by peptides. Despite the fast increase in the volume of biological data, particularly on sequences and structures, there remains a lack of broad and comprehensive protein–peptide databases and tools that allow the retrieval, characterization and understanding of protein–peptide recognition and consequently support peptide design. Results We introduce Propedia, a comprehensive and up-to-date database with a web interface that permits clustering, searching and visualizing of protein–peptide complexes according to varied criteria. Propedia comprises over 19,000 high-resolution structures from the Protein Data Bank including structural and sequence information from protein–peptide complexes. The main advantage of Propedia over other peptide databases is that it allows a more comprehensive analysis of similarity and redundancy. It was constructed based on a hybrid clustering algorithm that compares and groups peptides by sequences, interface structures and binding sites. Propedia is available through a graphical, user-friendly and functional interface where users can retrieve, and analyze complexes and download each search data set. We performed case studies and verified that the utility of Propedia scores to rank promissing interacting peptides. In a study involving predicting peptides to inhibit SARS-CoV-2 main protease, we showed that Propedia scores related to similarity between different peptide complexes with SARS-CoV-2 main protease are in agreement with molecular dynamics free energy calculation. Conclusions Propedia is a database and tool to support structure-based rational design of peptides for special purposes. Protein–peptide interactions can be useful to predict, classifying and scoring complexes or for designing new molecules as well. Propedia is up-to-date as a ready-to-use webserver with a friendly and resourceful interface and is available at: https://bioinfo.dcc.ufmg.br/propedia
Evolutionarily related proteins can present similar structures but very dissimilar sequences. Hence, understanding the role of the inter-residues contacts for the protein structure has been the target of many studies. Contacts comprise non-covalent interactions, which are essential to stabilize macromolecular structures such as proteins. Here we show VTR, a new method for the detection of analogous contacts in protein pairs. The VTR web tool performs structural alignment between proteins and detects interactions that occur in similar regions. To evaluate our tool, we proposed three case studies: we 1) compared vertebrate myoglobin and truncated invertebrate hemoglobin; 2) analyzed interactions between the spike protein RBD of SARS-CoV-2 and the cell receptor ACE2; and 3) compared a glucose-tolerant and a non-tolerant β-glucosidase enzyme used for biofuel production. The case studies demonstrate the potential of VTR for the understanding of functional similarities between distantly sequence-related proteins, as well as the exploration of important drug targets and rational design of enzymes for industrial applications. We envision VTR as a promising tool for understanding differences and similarities between homologous proteins with similar 3D structures but different sequences. VTR is available at http://bioinfo.dcc.ufmg.br/vtr.
Evolutionarily related proteins can present similar structures but very dissimilar sequences. Hence, understanding the role of the inter-residues contacts for the protein structure has been the target of many studies. Contacts comprise non-covalent interactions, which are essential to stabilize macromolecular structures such as proteins. Here we show VTR, a new method for the detection of analogous contacts in protein pairs. VTR performs structural alignment between proteins and detects interactions that occur in similar regions. To evaluate our tool, we proposed three case studies: (i) we compared a vertebrate myoglobin and a truncated invertebrate hemoglobin; (ii) analyzed interactions between the spike protein RBD of SARS-CoV-2 and the cell receptor ACE2; and (iii) compared a glucose-tolerant and a non-tolerant β-glucosidase enzyme used for biofuel production. The case studies demonstrate the potential of VTR for the understanding of functional similarities between distantly sequence-related proteins, as well as the exploration of important drug targets and rational design of enzymes for industrial applications. We envision VTR as a promising tool for understanding differences and similarities between homologous proteins with similar 3D structures but different sequences. VTR is available at http://bioinfo.dcc.ufmg.br/vtr.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.