Wetlands are the largest global source of atmospheric methane (CH), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH in the tropics, consistently underestimate the atmospheric burden of CH determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH emissions. Here we report CH fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δC) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a 'top-down' regional estimate of CH emissions of 42.7 ± 5.6 teragrams of CH a year for the Amazon basin, based on regular vertical lower-troposphere CH profiles covering the period 2010-2013. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, indicating that large CH emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH source when trees are combined with other emission sources.
The shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora.
BackgroundPhilodendron is the second largest genus of Araceae, being highly diverse in the Atlantic Forest biome, with nearly one third of the Brazilian species occurring in Southern Brazil, particularly in Rio de Janeiro state. During a local inventory in Silva Jardim municipality, we found a peculiar population of Philodendron growing in lowland rainforest.ResultsAfter morphological analysis and comparisons with similar species, the population proved to be a new undescribed species of subgenus Philodendron section Macrobelium.ConclusionsThe new species, named Philodendron luisae, is here described, illustrated and compared to morphologically close species.Electronic supplementary materialThe online version of this article (doi:10.1186/s40529-015-0082-x) contains supplementary material, which is available to authorized users.
The study presents a new and expanded treatment of the taxonomy, diversity and conservation status of all species of the genus Philodendron Schott (Araceae) so far discovered in Rio de Janeiro State, Southeastern Brazil. It contributes to taxonomic and biological knowledge of the humid flora of the Brazilian Atlantic Forest, a globally recognized hotspot of biodiversity. The taxonomic treatment is based on 60 field collecting expeditions carried out since 2006, mainly in Southeastern Brazil, and the study of over 2200 herbarium specimens. Twenty eight species are recognized and their morphological descriptions, nomenclature and typification of relevant names are given. Lectotypes are designated for fourteen names, neotypes are designated for two names and epitypes for twelve names. Illustrations of all species are provided, together with a key and information on habitat and phenology for each species. The evaluations of the conservation status of the species were based on field observations, specialist literature, information from herbarium specimens and lists of endangered species. Evaluations of 16 of the 28 species found in Rio de Janeiro State are presented for the first time here and revised evaluations are presented for another six (P. altomacaense, P. cordatum, P. inops, P. hastatum, P. hatschbachii, P. roseopetiolatum) (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Philodendron subgenus Meconostigma has been a well-circumscribed group since 1829. Members of this group are easily distinguished by diagnostic morphological characters as well as by a distinct ecology and geographical distribution. Based on molecular, morphological and cytological evidence, we propose the recognition of P. subg. Meconostigma as a distinct genus, Thaumatophyllum Schott. We also present the necessary new combinations, an emended key and some nomenclatural and taxonomic corrections regarding 21 names of Thaumatophyllum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.