We investigate non-trivial topological structures in Discrete Light Cone Quantization (DLCQ) through the example of the broken symmetry phase of the two dimensional φ 4 theory using anti periodic boundary condition (APBC). We present evidence for degenerate ground states which is both a signature of spontaneous symmetry breaking and mandatory for the existence of kinks. Guided by a constrained variational calculation with a coherent state ansatz, we then extract the vacuum energy and kink mass and compare with classical and semi -classical results. We compare the DLCQ results for the number density of bosons in the kink state and the Fourier transform of the form factor of the kink with corresponding observables in the coherent variational kink state.
We address problems associated with compactification near and on the light front. In perturbative scalar field theory we illustrate and clarify the relationships among three approaches: (1) quantization on a space-like surface close to a light front; (2) infinite momentum frame calculations; and (3) quantization on the light front. Our examples emphasize the difference between zero modes in space-like quantization and those in light front quantization. In particular, in perturbative calculations of scalar field theory using discretized light cone quantization there are well-known new "zero mode induced" interaction terms. However, we show that they decouple in the continuum limit and covariant answers are reproduced. Thus compactification of a light-like surface is feasible and defines a consistent field theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.