Some mononuclear and dinuclear Ni(ii) complexes with tetradentate Schiff base ligands exhibit zero-field splitting and ferromagnetic coupling, respectively.
The spin crossover system, [Fe(bzimpy)(2)](ClO(4))(2).0.25H(2)O, was reinvestigated above room temperature (bzimpy = 2,6-bis(benzimidazol-2-yl)pyridine). The system exhibits an abrupt low-spin to high-spin transition at T(c) = 403 K. Liberation of a fractional amount of water does not affect the spin crossover: the system is perfectly reversible with a hysteresis width of DeltaT = 12 K. The existence of the hysteresis at such high temperature determines that the lowest limit of the solid-state cooperativity parameter is J/k > 403 K despite long iron(II) separations (10 A). The high cooperativeness has been assigned to a perfect pi-stacking of the benzimidazole rings in the crystal lattice at a distance as short as 3.6 A. Variable-temperature IR data and the heat capacity measurements match well the magnetic data. The thermodynamic properties are DeltaH = 17 kJ mol(-)(1), DeltaS = 43 J K(-)(1) mol(-)(1), so that the entropy of the spin transition shows a considerable contribution from the molecular vibrations. A theoretical model has been applied in fitting the magnetic data along the whole hysteresis path. A statistical distribution of the cooperativity parameter led to the feature that angled walls of the hysteresis loop are well reproduced.
Aqueous medium syntheses and nitroaldol catalytic studies of three pseudohalide bridged copper(ii) complexes characterized by single crystal X-ray structure analysis and variable temperature magnetic studies are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.