Dandelions (genus Taraxacum) comprise a group of sexual diploids and apomictic polyploids with a complicated reticular evolution. Apomixis (clonal reproduction through seeds) in this genus is considered to be obligate, and therefore represent a good model for studying the role of asexual reproduction in microevolutionary processes of apomictic genera. In our study, a total of 187 apomictic individuals composing a set of nine microspecies (sampled across wide geographic area in Europe) were genotyped for six microsatellite loci and for 162 amplified fragment length polymorphism (AFLP) markers. Our results indicated that significant genetic similarity existed within accessions with low numbers of genotypes. Genotypic variability was high among accessions but low within accessions. Clustering methods discriminated individuals into nine groups corresponding to their phenotypes. Furthermore, two groups of apomictic genotypes were observed, which suggests that they had different asexual histories. A matrix compatibility test suggests that most of the variability within accession groups was mutational in origin. However, the presence of recombination was also detected. The accumulation of mutations in asexual clones leads to the establishment of a network of clone mates. However, this study suggests that the clones primarily originated from the hybridisation between sexual and apomicts.
Chloroplast DNA sequences show substantial variation between higher plant species, and less variation within species, so are typically excellent markers to investigate evolutionary, population and genetic relationships and phylogenies. We sequenced the plastomes of Taraxacum obtusifrons Markl. (O978); T. stridulum Trávniček ined. (S3); and T. amplum Markl. (A978), three apomictic triploid (2n = 3x = 24) dandelions from the T. officinale agg. We aimed to characterize the variation in plastomes, define relationships and correlations with the apomictic microspecies status, and refine placement of the microspecies in the evolutionary or phylogenetic context of the Asteraceae. The chloroplast genomes of accessions O978 and S3 were identical and 151,322 bp long (where the nuclear genes are known to show variation), while A978 was 151,349 bp long. All three genomes contained 135 unique genes, with an additional copy of the trnF-GGA gene in the LSC region and 20 duplicated genes in the IR region, along with short repeats, the typical major Inverted Repeats (IR1 and IR2, 24,431bp long), and Large and Small Single Copy regions (LSC 83,889bp and SSC 18,571bp in O978). Between the two Taraxacum plastomes types, we identified 28 SNPs. The distribution of polymorphisms suggests some parts of the Taraxacum plastome are evolving at a slower rate. There was a hemi-nested inversion in the LSC region that is common to Asteraceae, and an SSC inversion from ndhF to rps15 found only in some Asteraceae lineages. A comparative repeat analysis showed variation between Taraxacum and the phylogenetically close genus Lactuca, with many more direct repeats of 40bp or more in Lactuca (1% larger plastome than Taraxacum). When individual genes and non-coding regions were for Asteraceae phylogeny reconstruction, not all showed the same evolutionary scenario suggesting care is needed for interpretation of relationships if a limited number of markers are used. Studying genotypic diversity in plastomes is important to characterize the nature of evolutionary processes in nuclear and cytoplasmic genomes with the different selection pressures, population structures and breeding systems.
Gametophytic apomixis (asexual seed formation without syngamy of female and male gametes) is a highly interesting mechanism for researchers in plant biotechnology, genetics, evolutionary biology, and taxonomy. Apomixis evolved repeatedly and independently in the evolution of multiple genera. It is an effective reproduction barrier and, consequently, conserved apomictic genotypes may become overrepresented in nature. Apomictic plants may easily colonize free niches with only one or a few individuals and outcompete outcrossing plants. In spite of the indisputable pros of asexual reproduction, apomixis also has several cons. One of the most commonly mentioned is the accumulation of deleterious mutations in asexual lineages and decreased genetic variation. However, apomicts in general can be genetically highly diverse. The most common sources of this variation are the accumulation of mutations, hybridization with sexual plants, and facultative apomixis. Facultative apomicts are highly variable in their level of residual sexuality, which increases their genotypic and phenotypic variation. Even in the case of obligate apomicts, gene flow is possible due to functional male meiosis and the production of viable pollen grains by apomicts. Apomixis occurs in plant genera in which hybridization together with polyploidization play an important role in diversification and causes severe problems in taxonomy. How to accommodate apomictic taxa in taxonomic treatments, and understanding what should and what should not be referred to as a species are intriguing questions. This review aims to provide an overview of the main characteristics of “apomictic genera” and the approaches used to treat apomictic taxa within these genera. To achieve this aim, the review was divided into several parts. Firstly, the distinctive features of apomictic reproduction and apomictic taxa are described together with issues related to the taxonomic evaluation of apomictic taxa. The second part discusses approaches in the known apomictic genera, and the final part presents the authors’ view on important points, which need to be taken into account in the classification of apomictic taxa.
Aim To test if tree species richness and forest structure drive spatial variation in avian communities along a tropical elevation gradient and to present information about the role of detailed forest parameters. Location A 2,000‐m long elevational gradient of tropical forest on Mt. Cameroon, west‐central Africa. Taxon Birds and trees. Methods We performed bird censuses and vegetation mapping at the same plots across six forested sites at elevations of 350, 650, 1,100, 1,500, 1,850, and 2,200 m a.s.l., with 16 plots per elevation. We tested the effects of elevation, forest structure and tree diversity on the species richness, functional diversity and β‐diversity of birds (Bray–Curtis dissimilarity). We used conditional inference trees based on random forests (RF) to investigate these relationships across all elevation sites as well as within elevations. Results Both tree and bird species richness declined monotonically with elevation. Vegetation structure correlated with elevation, and all vegetation attributes significantly differed among elevations. The RF explained 70% of the variance in avian species richness, with the most important predictors being elevation, proportion of dead trees, tree species richness and herb layer coverage. We found that elevation (and shrub layer) was a particularly important predictor of avian functional diversity. We identified no important predictor of bird species richness after standardization within elevations, and the proportion of dead trees was the sole important predictor of functional diversity. Within‐elevation β‐diversity in avian community composition was determined by the dissimilarity of the tree community and differences in leaf area index, solar radiation and spatial distance. The functional dissimilarity was best explained by leaf area index. Main conclusions Apart from elevation itself, spatial distance even within elevations correlated with compositional and functional variation among avian assemblages. Forest structural traits can have a significant influence on distribution of birds. Thus, gaps in the spatial distribution of species such as along elevations might be caused by fine‐scale recognition of suitable habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.