In May 2019, Collection 2 of the Copernicus Global Land Cover layers was released. Next to a global discrete land cover map at 100 m resolution, a set of cover fraction layers is provided depicting the percentual cover of the main land cover types in a pixel. This additional continuous classification scheme represents areas of heterogeneous land cover better than the standard discrete classification scheme. Overall, 20 layers are provided which allow customization of land cover maps to specific user needs or applications (e.g., forest monitoring, crop monitoring, biodiversity and conservation, climate modeling, etc.). However, Collection 2 was not just a global up-scaling, but also includes major improvements in the map quality, reaching around 80% or more overall accuracy. The processing system went into operational status allowing annual updates on a global scale with an additional implemented training and validation data collection system. In this paper, we provide an overview of the major changes in the production of the land cover maps, that have led to this increased accuracy, including aligning with the Sentinel 2 satellite system in the grid and coordinate system, improving the metric extraction, adding better auxiliary data, improving the biome delineations, as well as enhancing the expert rules. An independent validation exercise confirmed the improved classification results. In addition to the methodological improvements, this paper also provides an overview of where the different resources can be found, including access channels to the product layer as well as the detailed peer-review product documentation.
Atmospheric correction plays a crucial role among the processing steps applied to remotely sensed hyperspectral data. Atmospheric correction comprises a group of procedures needed to remove atmospheric effects from observed spectra, i.e. the transformation from at-sensor radiances to at-surface radiances or reflectances. In this paper we present the different steps in the atmospheric correction process for APEX hyperspectral data as applied by the Central Data Processing Center (CDPC) at the Flemish Institute for Technological Research (VITO, Mol, Belgium). The MODerate resolution atmospheric TRANsmission program (MODTRAN) is used to determine the source of radiation and for applying the actual atmospheric correction. As part of the overall correction process, supporting algorithms are provided in order to derive MODTRAN configuration parameters and to account for specific effects, e.g. correction for adjacency effects, haze and shadow correction, and topographic BRDF correction. The methods and theory underlying these corrections and an example of an application are presented.
Airborne remote sensing with a CASI-550 sensor has been used to map the benthic coverage and the bottom topography of the Pulau Nukaha coral reef located in the Tanimbar Archipelago (Southeast Moluccas, Eastern Indonesia). The image classification method adopted was performed in three steps. Firstly, five geomorphological reef components were identified using a supervised spectral angle mapping algorithm in combination with data collected during the field survey, i.e. benthic cover type, percentage cover and depth. Secondly, benthic cover mapping was performed for each of the five geomorphological components separately using an unsupervised hierarchical clustering algorithm followed by class aggregation using both spectral and spatial information. Finally, 16 benthic cover classes could be labelled using the benthic cover data collected during the field survey. The overall classification accuracy, calculated on the biological diverse fore reef, was 73% with a kappa coefficient of 0.63. A reliable bathymetric model (up to a depth of 15m) of the Pulau Nukaha reef was also obtained using a semi-analytical radiative transfer model. When compared with independent in-situ depth measurements, the result proved relatively accurate (mean residual error: -0.9m) and was consistent with the seabed topography (Pearson correlation coefficient: 86%)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.