In this paper, we present a novel distributed framework for real time management and co-simulation of Demand Response (DR) in smart grids. Our solution provides a (near-) real-time co-simulation platform to validate new DR-policies exploiting Internet-of-Things approach performing software-in-the-loop. Hence, the behavior of real-world power systems can be emulated in a very realistic way and different DR-policies can be easily deployed and/or replaced in a plugand-play fashion, without affecting the rest of the framework. In addition, our solution integrates real internet-connected smart devices deployed at customer premises and along the Smart Grid to retrieve energy information and send actuation commands. Thus, the framework is also ready to manage DR in a real-world Smart Grid. This is demonstrated on a realistic smart grid with a test case DR-policy.
While the first aim of smart meters is to provide energy readings for billing purposes, the availability of these measurements could open new opportunities for the management of future distribution grids. This paper presents a multi-level state estimator that exploits smart meter measurements for monitoring both low and medium voltage grids. The goal of the paper is to present an architecture able to efficiently integrate smart meter measurements and to show the accuracy performance achievable if the use of real-time smart meter measurements for state estimation purposes were enabled. The design of the state estimator applies the uncertainty propagation theory for the integration of the data at the different hierarchical levels. The coordination of the estimation levels is realized through a cloud-based infrastructure, which also provides the interface to auxiliary functions and the access to the estimation results for other distribution grid management applications. A mathematical analysis is performed to characterize the estimation algorithm in terms of accuracy and to show the performance achievable at the different levels of the distribution grid when using the smart meter data. Simulations are presented, which validate the analytical results and demonstrate the operation of the multi-level estimator in coordination with the cloud-based platform.
The accurate monitoring of distribution grids is essential to enable the intelligent management and control of future Smart Grids. Several challenges prevent an easy development of the state estimation tools needed to assess the operating conditions of distribution networks. The lack of a suitable measurement infrastructure is one of the most challenging aspects to face. However, in last years, several utilities started a massive deployment of smart meters in their networks. The proper use of these measurements is key to enhance the performance of distribution system state estimators. This paper presents a two-level approach conceived to efficiently include smart meter measurements in low voltage grid state estimation. The proposed solution relies on a cloud-based smart metering architecture, which allows scalability and interoperability among different off-the-shelf meters. Moreover, a suitable design of the estimation algorithm, using the uncertainty propagation theory, is proposed in order to maximize the accuracy of the estimation results. Tests performed on a sample low voltage network show the performance and the main features of the proposed state estimation solution.
In order to systematically shift existing control and management paradigms in distribution systems to new interoperable communication supported schemes in smart grids, we need to map newly developed use cases to standard reference models like Smart Grid Architecture Model (SGAM). From the other side, any new use cases should be tested and validated ex-ante before being deployed in the real-world system. Considering various types of actors in smart grids, use cases are usually tested using co-simulation platforms. Currently, there is no efficient co-simulation platform which supports interoperability analysis based on SGAM. In this paper, we present our developed test platform which offers a support to design new use cases based on SGAM. We used this platform to develop a new scheme for wide area monitoring of existing distribution systems under growing penetration of Photovoltaic production. Off-the-shelf solutions of state estimation for wide area monitoring are either used for passive distribution grids or applied to the active networks with wide measurement of distributed generators. Our proposed distribution state estimation algorithm does not require wide area measurements and relies on the data provided by a PV simulator we developed. This practical scheme is tested experimentally on a realistic urban distribution grid. The monitoring results shows a very low error rate of about 1 % by using our PV simulator under high penetration of PV with about 30 % error of load forecast. Using our SGAM-based platform, we could propose and examine an Internet-of-Things-based infrastructure to deploy the use case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.