How quanta of energy and charge are transported on both atomic spatial and ultrafast time scales is at the heart of modern technology. Recent progress in ultrafast spectroscopy has allowed us to directly study the dynamical response of an electronic system to interaction with an electromagnetic field. Here, we present energy-dependent photoemission delays from the noble metal surfaces Ag(111) and Au(111). An interferometric technique based on attosecond pulse trains is applied simultaneously in a gas phase and a solid state target to derive surface-specific photoemission delays. Experimental delays on the order of 100 as are in the same time range as those obtained from simulations. The strong variation of measured delays with excitation energy in Ag(111), which cannot be consistently explained invoking solely electron transport or initial state localization as supposed in previous work, indicates that final state effects play a key role in photoemission from solids.
The A [(2)B1] <--X [(2)A2] band system between 380 and 420 nm was observed in a supersonic jet expansion. The allyl radical was found to dissociate following electronic excitation, releasing a hydrogen atom. Monitoring the appearance of the hydrogen atom photoproduct as a function of the excitation laser wavelength, similar spectral features are observed as in earlier absorption experiments. Time- and frequency-resolved photoionization of the hydrogen atom product provides information on the unimolecular dissociation dynamics. The measured dissociation rates and kinetic energy releases of both allyl radical, C3H5, and partially deuterated allyl radical, C3DH4, suggest direct loss of the central hydrogen atom, leading to allene as the major product.
What is the spatiotemporal limit of a macroscopic model that describes the optoelectronic interaction at the interface between different media? This fundamental question has become relevant for time-dependent photoemission from solid surfaces using probes that resolve attosecond electron dynamics on an atomic length scale. We address this fundamental question by investigating how ultrafast electron screening affects the infrared field distribution for a noble metal such as Cu (111) at the solid-vacuum interface. Attosecond photoemission delay measurements performed at different angles of incidence of the light allow us to study the detailed spatiotemporal dependence of the electromagnetic field distribution. Surprisingly, comparison with Monte Carlo semiclassical calculations reveals that the macroscopic Fresnel equations still properly describe the observed phase of the IR field on the Cu(111) surface on an atomic length and an attosecond time scale.
We present our attoline which is a versatile attosecond beamline at the Ultrafast Laser Physics Group at ETH Zurich for attosecond spectroscopy in a variety of targets. High-harmonic generation (HHG) in noble gases with an infrared (IR) driving field is employed to generate pulses in the extreme ultraviolet (XUV) spectral regime for XUV-IR cross-correlation measurements. The IR pulse driving the HHG and the pulse involved in the measurements are used in a non-collinear set-up that gives independent access to the different beams. Single attosecond pulses are generated with the polarization gating technique and temporally characterized with attosecond streaking. This attoline contains two target chambers that can be operated simultaneously. A toroidal mirror relay-images the focus from the first chamber into the second one. In the first interaction region a dedicated double-target allows for a simple change between photoelectron/photoion measurements with a time-of-flight spectrometer and transient absorption experiments. Any end station can occupy the second interaction chamber. A surface analysis chamber containing a hemispherical electron analyzer was employed to demonstrate successful operation. Simultaneous RABBITT measurements in two argon jets were recorded for this purpose.
The electronic band structure governs the electron dynamics in solids. It defines a group velocity and an effective mass of the electronic wave packet. Recent experimental and theoretical studies suggest that an electron acquires the effective mass of its excited state over distances much larger than the lattice period of the solid. Therefore, electron propagation on atomic length scales was typically considered to be free-electron-like. Here, we test this hypothesis by probing attosecond photoemission from a Cu(111) surface. We use attosecond pulse trains in the extreme-ultraviolet (21-33 eV) to excite electrons from two initial bands within the 3d-valence band of copper. We timed their arrival at the crystal surface with a probing femtosecond infrared pulse, and found an upper limit of 350±40 as (1 as=10−18 s) for the propagation time an electron requires to assume the effective mass of its excited state. This observation implies that a final-state Bloch wave packet forms within a travel distance of 5-7 Å, which is at most two atomic layers. Using well-established theory, our measurements demonstrate the importance of the band structure even for atomic-scale electron transport. The electronic band structure governs the electron dynamics in solids. It defines a group velocity and an effective mass of the electronic wave packet. Recent experimental and theoretical studies suggest that an electron acquires the effective mass of its excited state over distances much larger than the lattice period of the solid. Therefore, electron propagation on atomic length scales was typically considered to be free-electron-like. Here, we test this hypothesis by probing attosecond photoemission from a Cu(111) surface. We use attosecond pulse trains in the extremeultraviolet (21-33 eV) to excite electrons from two initial bands within the 3d-valence band of copper. We timed their arrival at the crystal surface with a probing femtosecond infrared pulse, and found an upper limit of 350 40 as (1 as 10 −18 s) for the propagation time an electron requires to assume the effective mass of its excited state. This observation implies that a final-state Bloch wave packet forms within a travel distance of 5-7 Å, which is at most two atomic layers. Using well-established theory, our measurements demonstrate the importance of the band structure even for atomic-scale electron transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.