How quanta of energy and charge are transported on both atomic spatial and ultrafast time scales is at the heart of modern technology. Recent progress in ultrafast spectroscopy has allowed us to directly study the dynamical response of an electronic system to interaction with an electromagnetic field. Here, we present energy-dependent photoemission delays from the noble metal surfaces Ag(111) and Au(111). An interferometric technique based on attosecond pulse trains is applied simultaneously in a gas phase and a solid state target to derive surface-specific photoemission delays. Experimental delays on the order of 100 as are in the same time range as those obtained from simulations. The strong variation of measured delays with excitation energy in Ag(111), which cannot be consistently explained invoking solely electron transport or initial state localization as supposed in previous work, indicates that final state effects play a key role in photoemission from solids.
We present our attoline which is a versatile attosecond beamline at the Ultrafast Laser Physics Group at ETH Zurich for attosecond spectroscopy in a variety of targets. High-harmonic generation (HHG) in noble gases with an infrared (IR) driving field is employed to generate pulses in the extreme ultraviolet (XUV) spectral regime for XUV-IR cross-correlation measurements. The IR pulse driving the HHG and the pulse involved in the measurements are used in a non-collinear set-up that gives independent access to the different beams. Single attosecond pulses are generated with the polarization gating technique and temporally characterized with attosecond streaking. This attoline contains two target chambers that can be operated simultaneously. A toroidal mirror relay-images the focus from the first chamber into the second one. In the first interaction region a dedicated double-target allows for a simple change between photoelectron/photoion measurements with a time-of-flight spectrometer and transient absorption experiments. Any end station can occupy the second interaction chamber. A surface analysis chamber containing a hemispherical electron analyzer was employed to demonstrate successful operation. Simultaneous RABBITT measurements in two argon jets were recorded for this purpose.
Attosecond control of the optical response of helium atoms to extreme ultraviolet radiation in the presence of moderately strong infrared laser light has been recently demonstrated both by employing attosecond pulse trains (APTs) and single attosecond pulses. In the case of APTs the interference between different transiently bound electron wavepackets excited by consecutive attosecond light bursts in the train was indicated as the predominant mechanism leading to the control. We studied the same physical system with transient absorption spectroscopy using elliptically polarized infrared pulses or APTs with a varying number of pulses down to a single pulse. Our new results are not consistent with this kind of wavepacket interference being the dominant mechanism and show that its role in the control over the photoabsorption probability has to be rediscussed.
Attosecond transient absorption spectroscopy is a recent addition to the experimental tool set of attosecond science. This alloptical method measures different observables than the previously existing techniques based on electron and ion detection and overcomes several of their limitations. We review the present state-of-the-art of attosecond transient absorption experiments and theory. Applications cover the exploration of ultrafast electron dynamics in atoms as well as in solid-state systems. As an example we discuss the observation of transiently bound electron wavepacket dynamics in helium in more detail. This example illustrates how transient absorption spectroscopy can provide information that is fundamentally inaccessible to the techniques based on ionisation, namely dynamics occurring well below the ionisation threshold. Furthermore, we show that a model based on wavepacket interference and originally developed to explain modulations in the ion yield is not sufficient to explain the observed optical response of the system. The optical response on extremely short timescales and in systems exposed to strong laser fields is still not fully understood. This makes the method also attractive for fundamental studies. Furthermore, it is expected that the technique will also find future applications for studying molecular systems in gas phase, in solution, or as solids and will greatly benefit from the advances of ultrafast lasers with multi-100-W average power improving signal-to-noise ratio by many orders of magnitude in the near future. © 2013 Taylor & Francis
The response of matter to an optical excitation consists essentially of absorption and emission. Traditional spectroscopy accesses the frequency-resolved and time-integrated response, while the temporal evolution stays concealed. However, we will demonstrate here that the temporal evolution of a virtual single-photon transition can be mapped out by a second pulsed electromagnetic field. The resulting optical signal shows optical gain and loss, which can be gated and controlled via the relative delay of the electromagnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.