Short, intense laser pulses can be used to access the transition regime between classical and quantum optical responses in dielectrics. In this regime, the relative roles of inter- and intraband light-driven electronic transitions remain uncertain. We applied attosecond transient absorption spectroscopy to investigate the interaction between polycrystalline diamond and a few-femtosecond infrared pulse with intensity below the critical intensity of optical breakdown. Ab initio time-dependent density functional theory calculations, in tandem with a two-band parabolic model, accounted for the experimental results in the framework of the dynamical Franz-Keldysh effect and identified infrared induction of intraband currents as the main physical mechanism responsible for the observations.
We report the breakdown of the electric dipole approximation in the long-wavelength limit in strong-field ionization with linearly polarized few-cycle mid-infrared laser pulses at intensities on the order of 10¹³ W/cm². Photoelectron momentum distributions were recorded by velocity map imaging and projected onto the beam propagation axis. We observe an increasing shift of the peak of this projection opposite to the beam propagation direction with increasing laser intensities. From a comparison with semiclassical simulations, we identify the combined action of the magnetic field of the laser pulse and the Coulomb potential as the origin of our observations.
We investigate experimentally the validity of proposed theories extending the tunneling approximation towards the multiphoton regime in strong-field ionization of helium. We employ elliptically polarized laser pulses and demonstrate how the influence of the ion potential on the released electron encoded in the measured observable provides the desired sensitivity to detect nonadiabatic effects in tunnel ionization. Our results show that for a large intensity range the proposed nonadiabatic theories contradict the experimental trends of the data, while adiabatic assumptions are confirmed.
We demonstrate a new attosecond pulse reconstruction modality which uses an algorithm that is derived from ptychography. In contrast to other methods, energy and delay sampling are not correlated, and as a result, the number of electron spectra to record is considerably smaller. Together with the robust algorithm, this leads to a more precise and fast convergence of the reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.