Identifying the main features and learning the causal relationships of a dynamic system from timeseries of sensor data are key problems in many real-world robot applications. In this paper, we propose an extension of a state-of-the-art causal discovery method, PCMCI, embedding an additional feature-selection module based on transfer entropy. Starting from a prefixed set of variables, the new algorithm reconstructs the causal model of the observed system by considering only its main features and neglecting those deemed unnecessary for understanding the evolution of the system. We first validate the method on a toy problem and on synthetic data of brain network, for which the ground-truth models are available, and then on a real-world robotics scenario using a large-scale time-series dataset of human trajectories. The experiments demonstrate that our solution outperforms the previous state-of-the-art technique in terms of accuracy and computational efficiency, allowing better and faster causal discovery of meaningful models from robot sensor data.
Exploiting robots for activities in human-shared environments, whether warehouses, shopping centres or hospitals, calls for such robots to understand the underlying physical interactions between nearby agents and objects. In particular, modelling cause-and-effect relations between the latter can help to predict unobserved human behaviours and anticipate the outcome of specific robot interventions. In this paper, we propose an application of causal discovery methods to model humanrobot spatial interactions, trying to understand human behaviours from real-world sensor data in two possible scenarios: humans interacting with the environment, and humans interacting with obstacles. New methods and practical solutions are discussed to exploit, for the first time, a stateof-the-art causal discovery algorithm in some challenging human environments, with potential application in many service robotics scenarios. To demonstrate the utility of the causal models obtained from real-world datasets, we present a comparison between causal and non-causal prediction approaches. Our results show that the causal model correctly captures the underlying interactions of the considered scenarios and improves its prediction accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.