The aim of this study was to evaluate the clinical applicability and biological behavior of a newly developed injectable calcium phosphate (Ca-P) cement as bone filler for gaps around oral implants. Twenty-four step-like implants, creating gaps of 1 and 2 mm, were inserted into the trabecular bone of the medial femoral condyles of six goats. Four different situations were tested: (1) implant + gaps; (2) implant + gaps, but covered with a polylactic acid membrane; (3) implant + gaps that were filled with Ca-P cement; and (4) implant + gaps that were filled with Ca-P cement and covered with a membrane. All implants were left in place for 12 weeks. Histological and quantitative histomorphometrical measurements demonstrated that implants + gaps had generally poor bone contact at the implant base. Furthermore, fibrous encapsulation was observed in the gap part. In contrast, the presence of a membrane promoted bone ingrowth into the gap and also the bone contact at the implant base. Injection of Ca-P cement resulted in an almost complete filling of the gaps around the implant. The cement surface was completely covered by bone. Active resorption and remodeling of cement particles was observed, suggesting a pattern of slow resorption associated with full replacement with newly formed bone. Additional use of a membrane did not result in adjunctive benefits. Bone-to-implant contact at the implant base was comparable with the implants provided only with a membrane. In conclusion, the Ca-P cement used here showed excellent clinical handling properties combined with a superior bone behavior. On the other hand, the degradation rate of the material was still very slow. This current characteristic can hamper the final clinical applicability of the material as gap filler for periimplant or periodontal defects.
The results of this study indicate that different tooth shapes are associated with significantly different values for the extent of the KM, its bucco-lingual thickness and the height of the interproximal maxillary central papilla.
Objectives: The aim of this study was to investigate, in polyurethane foam sheets, the primary implant stability of a NanoShort implant compared to a self-condenser implant and to a standard, conventional implant. Materials and Methods: Three implant designs were evaluated in the present in vitro investigation: The Test implant (NanoShort), the Control A implant (self-condenser), and the Control B implant (standard design). The study was conducted by comparing the insertion torque values, the pull-out strength values, and the resonance frequency analysis (RFA) values of the Test and Control A and B implants inserted in polyurethane foam models of different thicknesses and densities. The foam densities were 10, 20, and 30 pounds per cubic foot (pcf). Three thicknesses of polyurethane foams (1, 2, 3 mm) were evaluated for a total of 640 experimental sites. Results: The Pearson correlation showed a moderate/strong correlation between all study groups (r > 0.3) for insertion torque and pull-out strength levels. Increased stability of the Test implants was obtained in 3 mm polyurethane sheets. The 2.5 and 3.5 mm Test implants presented good stability in 3 mm polyurethane sheets of 20–30 pcf densities. The Control implants showed better results compared to the Test implants in 1, 2, and 3 mm polyurethane sheets with densities of 10, 20, and 30 pcf. Conclusions: The NanoShort dental implant evaluated in this in vitro study showed a high level of stability in some experimental conditions, and could represent a useful tool, especially in the posterior mandible, as an alternative to vertical augmentation procedures.
Background: The aim of the present study was to compare, in low-density polyurethane blocks, the primary implant stability values (micromobility) and removal torque values of three different implant geometries in two different bone densities representing the structure of the human posterior jaws. Methods: A total of 60 implants were used in the present investigation: twenty implants for each of three groups (group A, group B, and group C), in both polyurethane 10 pcf and 20 pcf densities. The insertion torque, pull-out torque, and implant stability quotient (ISQ) values were obtained. Results: No differences were found in the values of Group A and Group B implants. In both these groups, the insertion torques were quite low in the 10 pcf blocks. Better results were found in the 20 pcf blocks, which showed very good stability of the implants. The pull-out values were slightly lower than the insertion torque values. High ISQ values were found in Group A and B implants. Lower values were present in Group C implants. Conclusions: The present investigation evaluated implants with different geometries that are available on the market, and not experimental implants specifically created for the study. The authors aimed to simulate real clinical conditions (poor-density bone or immediate post-extraction implants) in which knowledge of dental implant features, which may be useful in increasing the primary stability, may help the oral surgeon during the surgery planning.
The elevation of a full- or partial-thickness flap did not appear to influence the amount of KT or the percentage of root coverage achieved post-surgically. More expanded studies are needed to confirm the present findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.