Recent evidence demonstrating an increased fracture risk among obese individuals suggests that adipose tissue may negatively impact bone health, challenging the traditional paradigm of fat mass playing a protective role towards bone health. White adipose tissue, far from being a mere energy depot, is a dynamic tissue actively implicated in metabolic reactions, and in fact secretes several hormones called adipokines and inflammatory factors that may in turn promote bone resorption. More specifically, Visceral Adipose Tissue (VAT) may potentially prove detrimental. It is widely acknowledged that obesity is positively associated to many chronic disorders such as metabolic syndrome, dyslipidemia and type 2 diabetes, conditions that could themselves affect bone health. Although aging is largely known to decrease bone strength, little is yet known on the mechanisms via which obesity and its comorbidities may contribute to such damage. Given the exponentially growing obesity rate in recent years and the increased life expectancy of western countries it appears of utmost importance to timely focus on this topic.
Background Cardiometabolic disorders may worsen Covid-19 outcomes. We investigated features and Covid-19 outcomes for patients with or without diabetes, and with or without cardiometabolic multimorbidity. Methods We collected and compared data retrospectively from patients hospitalized for Covid-19 with and without diabetes, and with and without cardiometabolic multimorbidity (defined as ≥ two of three risk factors of diabetes, hypertension or dyslipidaemia). Multivariate logistic regression was used to assess the risk of the primary composite outcome (any of mechanical ventilation, admission to an intensive care unit [ICU] or death) in patients with diabetes and in those with cardiometabolic multimorbidity, adjusting for confounders. Results Of 354 patients enrolled, those with diabetes (n = 81), compared with those without diabetes (n = 273), had characteristics associated with the primary composite outcome that included older age, higher prevalence of hypertension and chronic obstructive pulmonary disease (COPD), higher levels of inflammatory markers and a lower PaO2/FIO2 ratio. The risk of the primary composite outcome in the 277 patients who completed the study as of May 15th, 2020, was higher in those with diabetes (Adjusted Odds Ratio (adjOR) 2.04, 95%CI 1.12–3.73, p = 0.020), hypertension (adjOR 2.31, 95%CI: 1.37–3.92, p = 0.002) and COPD (adjOR 2.67, 95%CI 1.23–5.80, p = 0.013). Patients with cardiometabolic multimorbidity were at higher risk compared to patients with no cardiometabolic conditions (adjOR 3.19 95%CI 1.61–6.34, p = 0.001). The risk for patients with a single cardiometabolic risk factor did not differ with that for patients with no cardiometabolic risk factors (adjOR 1.66, 0.90–3.06, adjp = 0.10). Conclusions Patients with diabetes hospitalized for Covid-19 present with high-risk features. They are at increased risk of adverse outcomes, likely because diabetes clusters with other cardiometabolic conditions.
Vitamin K is a liposoluble vitamin. The predominant dietary form, phylloquinone or vitamin K1, is found in plants and green vegetables; whereas menaquinone, or vitamin K2, is endogenously synthesized by intestinal bacteria and includes several subtypes that differ in side chain length. Aside from its established role in blood clotting, several studies now support a critical function of vitamin K in improving bone health. Vitamin K is in fact required for osteocalcin carboxylation that in turn regulates bone mineral accretion; it seems to promote the transition of osteoblasts to osteocytes and also limits the process of osteoclastogenesis. Several observational and interventional studies have examined the relationship between vitamin K and bone metabolism, but findings are conflicting and unclear. This systematic review aims to investigate the impact of vitamin K (plasma levels, dietary intake, and oral supplementation) on bone health with a particular interest in bone remodeling, mineral density and fragility fractures.
Our data confirm an inverse correlation between irisin levels and vertebral fragility fractures, but no significant correlation was found with BMD or lean mass. Irisin may play a protective role on bone health independent of BMD but further studies are needed to clarify the relationship between irisin and bone metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.