This paper proposes a methodology for the assessment of the human exposure to magnetic fields generated by dynamic inductive power transfer systems for automotive applications. Since the magnetic field is pulsed, current safety standards and guidelines require the use of time-domain approaches to evaluate the peak exposure which has to be limited under the prescribed limits. This paper shows that, for these kind of systems, the peak exposure can be efficiently evaluated by means of a time-harmonic formulation. Furthermore, a methodology to identify the worst case scenario is proposed.
This paper reviews recent standardization activities and scientific studies related to the assessment of human exposure to electromagnetic fields (EMF). The differences of human exposure standards and assessment of consumer products and medical applications are summarized. First, we reviewed human body modeling and tissue dielectric properties. Then, we explain the rationale of current exposure standards from the viewpoint of EMF and the standardization process for product compliance based on these exposure standards. The assessment of wireless power transfer, as an example of emerging wireless devices, and environmental EMFs in our daily lives are reviewed. Safety in magnetic resonance systems, where the EMF exposure is much larger than from typical consumer devices, is also reviewed. Finally, we summarize future research directions and research needs for EMF safety.
In this article, we discuss numerical aspects related to the accuracy and the computational efficiency of numerical dosimetric simulations, performed in the context of human exposure to static inductive charging systems of electric vehicles. Two alternative numerical methods based on electric vector potential and electric scalar potential formulations, respectively, are here considered for the electric field computation in highly detailed anatomical human models. The results obtained by the numerical implementation of both approaches are discussed in terms of compliance assessment with ICNIRP guidelines limits for human exposure to electromagnetic fields. In particular, different strategies for smoothing localized unphysical outliers are compared, including novel techniques based on statistical considerations. The outlier removal is particularly relevant when comparison with basic restrictions is required to define the safety of electromagnetic fields exposure. The analysis demonstrates that it is not possible to derive general conclusions about the most robust method for dosimetric solutions. Nevertheless, the combined use of both formulations, together with the use of an algorithm for outliers removal based on a statistical approach, allows to determine final results to be compared with reference limits with a significant level of reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.