Background In this study we evaluated the incidence of invasive pulmonary aspergillosis among intubated patients with critical coronavirus disease 2019 (COVID-19) and evaluated different case definitions of invasive aspergillosis. Methods Prospective, multicentre study on adult patients with microbiologically confirmed COVID-19 receiving mechanical ventilation. All included participants underwent screening protocol for invasive pulmonary aspergillosis with bronchoalveolar lavage galactomannan and cultures performed on admission at 7 days and in case of clinical deterioration. Cases were classified as coronavirus associated pulmonary aspergillosis (CAPA) according to previous consensus definitions. The new definition was compared with putative invasive pulmonary aspergillosis (PIPA). Results A total of 108 patients were enrolled. Probable CAPA was diagnosed in 30 (27.7%) of patients after a median of 4 (2-8) days from intensive care unit (ICU) admission. Kaplan-Meier curves showed a significant higher 30-day mortality rate from ICU admission among patients with either CAPA (44% vs 19%, p= 0.002) or PIPA (74% vs 26%, p<0.001) when compared with patients not fulfilling criteria for aspergillosis. The association between CAPA [OR 3.53 (95%CI 1.29-9.67), P=0.014] or PIPA [OR 11.60 (95%CI 3.24-41.29) p<0.001] with 30-day mortality from ICU admission was confirmed even after adjustment for confounders with a logistic regression model. Among patients with CAPA receiving voriconazole treatment (13 patients, 43%) A trend toward lower mortality (46% vs 59% p=0.30) and reduction of galactomannan index in consecutive samples was observed. Conclusion We found a high incidence of CAPA among critically ill COVID-19 patients and that its occurrence seems to change the natural history of disease
Rationale: During acute lung injury (ALI), mechanical ventilation can aggravate inflammation by promoting alveolar distension and cyclic recruitment-derecruitment. As an estimate of the intensity of inflammation, metabolic activity can be measured by positron emission tomography imaging of [ 18 F]fluoro-2-deoxy-D-glucose. Objectives: To assess the relationship between gas volume changes induced by tidal ventilation and pulmonary metabolic activity in patients with ALI. Methods: In 13 mechanically ventilated patients with ALI and relatively high positive end-expiratory pressure, we performed a positron emission tomography scan of the chest and three computed tomography scans: at mean airway pressure, end-expiration, and end-inspiration. Metabolic activity was measured from the [ 18 F]fluoro-2-deoxy-D-glucose uptake rate. The computed tomography scans were used to classify lung regions as derecruited throughout the respiratory cycle, undergoing recruitment-derecruitment, and normally aerated. Measurements and Main Results: Metabolic activity of normally aerated lung was positively correlated both with plateau pressure, showing a pronounced increase above 26 to 27 cm H 2 O, and with regional VT normalized by end-expiratory lung gas volume. This relationship did not appear to be caused by a higher underlying parenchymal metabolic activity in patients with higher plateau pressure. Regions undergoing cyclic recruitment-derecruitment did not have higher metabolic activity than those collapsed throughout the respiratory cycle. Conclusions: In patients with ALI managed with relatively high endexpiratory pressure, metabolic activity of aerated regions was associated with both plateau pressure and regional VT normalized by end-expiratory lung gas volume, whereas no association was found between cyclic recruitment-derecruitment and increased metabolic activity.Keywords: acute lung injury; respiration, artificial; tomography, X-ray computed; positron emission tomographyWe reported (1) that positron emission tomography (PET) with [ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG) shows diffuse increase in metabolic activity in the lungs of patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS).In keeping with previous evidence, we interpreted the increased metabolic activity as indicating the presence of an inflammatory process (2-5). The cross-registration of dynamic PET images with computed tomography (CT) scans allowed us to show that the increased metabolic activity was not confined to regions with abnormal density but also involved normally aerated regions (1, 6).Mechanical ventilation can be a powerful inflammatory stimulus and ventilator-induced lung injury (VILI) has been the object of extensive research. Two main mechanisms have been advocated for VILI, the first being the cyclic recruitment and derecruitment of alveolar units (sometimes referred to as ''atelectrauma'') (7, 8) and the second being the (over)distension of aerated alveolar units (9, 10). Most of the data on VILI derive from animal ...
Anaplastic lymphoma kinase (ALK)-positive lymphomas respond to chemotherapy, but relapses, which bear a poor prognosis, occur. Crizotinib inhibits ALK in vitro and in vivo and was administered as monotherapy to 11 ALK+ lymphoma patients who were resistant/refractory to cytotoxic therapy. The overall response rate was 10 of 11 (90.9%; 95% confidence interval [CI] = 58.7% to 99.8%). Disease status at the latest follow-up is as follows: four patients are in complete response (CR) (months >21, >30, >35, >40) under continuous crizotinib administration; 4 patients had progression of disease (months 1, 2, 2, 2); 1 patient obtained CR on crizotinib, received an allogeneic bone marrow transplant, and is in CR; 2 patients (treated before and/or after allogeneic bone marrow transplant) obtained and are still in CR but they have stopped crizotinib. Overall and progression-free survival rates at 2 years are 72.7% (95% CI = 39.1% to 94.0%) and 63.7% (95% CI = 30.8% to 89.1%), respectively. ALK mutations conferring resistance to crizotinib in vitro could be identified in relapsed patients. Crizotinib exerted a potent antitumor activity with durable responses in advanced, heavily pretreated ALK+ lymphoma patients, with a benign safety profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.