[1] The paper presents a review of the far-infrared (FIR) properties of the Earth's atmosphere and their role in climate. These properties have been relatively poorly understood, and it is one of the purposes of this review to demonstrate that in recent years we have made great strides in improving this understanding. Seen from space, the Earth is a cool object, with an effective emitting temperature of about 255 K. This contrasts with a global mean surface temperature of $288 K and is due primarily to strong absorption of outgoing longwave energy by water vapor, carbon dioxide, and clouds (especially ice). A large fraction of this absorption occurs in the FIR, and so the Earth is effectively a FIR planet. The FIR is important in a number of key climate processes, for example, the water vapor and cloud feedbacks (especially ice clouds). The FIR is also a spectral region which can be used to remotely sense and retrieve atmospheric composition in the presence of ice clouds. Recent developments in instrumentation have allowed progress in each of these areas, which are described, and proposals for a spaceborne FIR instrument are being formulated. It is timely to review the FIR properties of the clear and cloudy atmosphere, the role of FIR processes in climate, and its use in observing our planet from space.
Water vapor and clouds are among the most important greenhouse components whose radiative features cover all the broad spectral range of the thermal emission of the atmosphere. Typically more than 40% of the total thermal emission of Earth occurs in the far-infrared (FIR) spectral region from 100 to 667 cm−1 (wavelengths from 100 to 15 µm). Nevertheless, this spectral region has not ever been fully covered down to 100 cm−1 by space missions, and only a few ground-based experiments exist because of the difficulty of performing measurements from high altitude and very dry locations where the atmosphere is sufficiently transparent to observe the FIR emission features. To cover this lack of observations, the Italian experiment “Radiative Properties of Water Vapor and Clouds in Antarctica” has collected a 2-yr dataset of spectral measurements of the radiance emitted by the atmosphere and by clouds, such as cirrus and polar stratospheric clouds, from 100 to 1,400 cm−1 (100–7 µm of wavelength), including the underexplored FIR region, along with polarization-sensitive lidar observations, daily radiosondes, and other ancillary information to characterize the atmosphere above the site. Measurements have been performed almost continuously with a duty cycle of 6 out of 9 h, from the Italian–French base of Concordia at Dome C over the Antarctic Plateau at 3,230 m MSL, in all-sky conditions since 2012. Because of the uniqueness of the observations, this dataset will be extremely valuable for evaluating the accuracy of atmospheric absorption models (both gas and clouds) in the underexplored FIR and to detect possible daily, seasonal, and annual climate signatures.
The paper presents a novel methodology to retrieve the foreign-broadened water vapor continuum absorption coefficients in the spectral range 240 to 590 cm(-1) and is the first estimation of the continuum coefficient at wave numbers smaller than 400 cm(-1) under atmospheric conditions. The derivation has been accomplished by processing a suitable set of atmospheric emitted spectral radiance observations obtained during the March 2007 Alps campaign of the ECOWAR project (Earth Cooling by WAter vapor Radiation). It is shown that, in the range 450 to 600 cm(-1), our findings are in good agreement with the widely used Mlawer, Tobin-Clough, Kneizys-Davies (MT CKD) continuum. Below 450 cm(-1) however the MT CKD model overestimates the magnitude of the continuum coefficient.
[1] This paper presents the project Earth Cooling by Water Vapor Radiation, an observational programme, which aims at developing a database of spectrally resolved far infrared observations, in atmospheric dry conditions, in order to validate radiative transfer models and test the quality of water vapor continuum and line parameters. The project provides the very first set of far-infrared spectral downwelling radiance measurements, in dry atmospheric conditions, which are complemented with Raman Lidar-derived temperature and water vapor profiles. Citation: Bhawar, R., et al. (2008), Spectrally resolved observations of atmospheric emitted radiance in the H 2 O rotation band, Geophys. Res. Lett., 35, L04812,
Capsule summary
The Far-infrared Outgoing Radiation Understanding and Monitoring mission will observe the Earth’s emitted outgoing radiation spectrum across the far-infrared with high spectral resolution and accuracy from space for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.