Summary:The chestnut gall wasp Dryocosmus kuriphilus is a global pest of chestnut (Castanea). Established as a pest in the mid 20th century in Japan, Korea and the USA, this species has now reached Europe. Successful deployment of a biocontrol agent, Torymus sinensis, in Japan has led to its early release in Italy. Here we provide the first overview of the natural enemies associated with D. kuriphilus in its native and invaded ranges, and discuss general patterns in community development. We then use what is known about European oak gall wasp communities to predict possible future developments for D. kuriphilus, and possible interactions between parasitoid communities attacking hosts on chestnut and oaks.
The cixiid species Reptalus quinquecostatus, R. cuspidatus, R. panzeri and R. melanochaetus are widely distributed in Europe and are receiving growing attention because of their potential role as phytoplasma vectors. Identifying the Reptalus species is restricted to a few specialist entomologists and relies on the morphology of the male genitalia, hampering the identification of juveniles and females. This study provides the tools for species discrimination by integrating the morphological description, which is primarily for the genus identification, with new molecular assays, based on both ribosomal and mitochondrial DNA. PCR-RFLP assays carried out on the mitochondrial cytochrome oxidase I gene (COI) with AluI provided species-specific profiles for the four Reptalus species. Amplification of a ribosomal internal transcribed spacer (ITS2) region produced species-specific fragments of different sizes for R. quinquecostatus, R. melanochaetus, R. cuspidatus and R. panzeri. The digestion of the ITS2 PCR product with TaqI allowed the discrimination of these latter two species. This molecular identification key ensures reliable results and can be successfully applied not only to adults, but also to the nymphs feeding on the roots. The identification of the nymphs (i) extends the collection period of these monovoltine species to the whole year (adults are present for a short summer period) and (ii) allows the unambiguous identification of their actual host plants because nymphs are steady on the root system while adults tend to disperse onto other plants. Fast and reliable identification of the Reptalus species provides useful help in monitoring activities and, therefore, in designing rational control strategies to protect crops from phytoplasma infection.
The leafhopper Scaphoideus titanus is able to transmit 16SrV phytoplasmas agents of grapevine's flavescence dorée (FD) within 30–45 days, following an acquisition access period (AAP) of a few days feeding on infected plants as a nymph, a latency period (LP) of 3–5 weeks becoming meanwhile an adult, and an inoculation access period (IAP) of a few days on healthy plants. However, several aspects of FD epidemiology suggest how the whole transmission process may take less time, and may start directly with adults of the insect vector. Transmission experiments have been set up under lab condition. Phytoplasma‐free S. titanus adults were placed on broad bean (BB) plants (Vicia faba) infected by FD‐C (16SrV‐C) phytoplasmas for an AAP = 7 days. Afterwards, they were immediately moved onto healthy BB for IAP, which were changed every 7 days, obtaining three timings of inoculation: IAP 1, IAP 2 and IAP 3, lasting 7, 14 and 21 days from the end of AAP, respectively. DNA was extracted from plants and insects, and PCR tests were performed to identify FD phytoplasmas. Insects were dissected and fluorescence in situ hybridisation was made to detect the presence of phytoplasmas in midguts and salivary glands. The rate of infection in insects ranged 46–68% without significant differences among IAPs. Inoculation in plants succeeded in all IAPs, at a rate of 16–23% (no significant differences). Phytoplasma load was significantly higher in IAP 3 than IAP 1–2 for both plants and insects. Phytoplasmas were identified both in midgut and salivary glands of S. titanus at all IAP times. The possible implications of these results in the epidemiology of flavescence dorée are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.