Carbon dioxide (CO 2 ) stands out as sustainable feedstock for developing a circular carbon economy whose energy supply could be obtained by boosting the production of clean hydrogen from renewable electricity. H 2 ‐dependent CO 2 gas fermentation using acetogenic microorganisms offers a viable solution of increasingly demonstrated value. While gas fermentation advances to achieve commercial process scalability, which is currently limited to a few products such as acetate and ethanol, it is worth taking the best of the current state‐of‐the‐art technology by its integration within innovative bioconversion schemes. This review presents multiple scenarios where gas fermentation by acetogens integrate into double‐stage biotechnological production processes that use CO 2 as sole carbon feedstock and H 2 as energy carrier for products' synthesis. In the integration schemes here reviewed, the first stage can be biotic or abiotic while the second stage is biotic. When the first stage is biotic, acetogens act as a biological platform to generate chemical intermediates such as acetate, formate and ethanol that become substrates for a second fermentation stage. This approach holds the potential to enhance process titre/rate/yield metrics and products' spectrum. Alternatively, when the first stage is abiotic, the integrated two‐stage scheme foresees, in the first stage, the catalytic transformation of CO 2 into C 1 products that, in the second stage, can be metabolized by acetogens. This latter scheme leverages the metabolic flexibility of acetogens in efficient utilization of the products of CO 2 abiotic hydrogenation, namely formate and methanol, to synthesize multicarbon compounds but also to act as flexible catalysts for hydrogen storage or production.
Gas fermentation by acetogens of the genus Clostridium is an attractive technology since it affords the production of biochemicals and biofuels from industrial waste gases while contributing to mitigate the carbon cycle alterations. The acetogenic model organisms C. ljungdahlii and C. autoethanogenum have already been used in large scale industrial fermentations. Among the natural products, ethanol production has already attained industrial scale. However, some acetogens are also natural producers of 2,3-butanediol (2,3-BDO), a platform chemical of relevant industrial interest. Here, we have developed a lab-scale screening campaign with the aim of enhancing 2,3-BDO production. Our study generated comparable data on growth and 2,3-BDO production of several batch gas fermentations using C. ljungdahlii and C. autoethanogenum grown on different gas substrates of primary applicative interest (CO2 · H2, CO · CO2, syngas) and on different media featuring different compositions as regards trace metals, mineral elements and vitamins. CO · CO2 fermentation was found to be preferable for the production of 2,3-BDO, and a fair comparison of the strains cultivated in comparable conditions revealed that C. ljungdahlii produced 3.43-fold higher titer of 2,3-BDO compared to C. autoethanogenum. Screening of different medium compositions revealed that mineral elements, Zinc and Iron exert a major positive influence on 2,3-BDO titer and productivity. Moreover, the CO2 influence on CO fermentation was explored by characterizing C. ljungdahlii response with respect to different gas ratios in the CO · CO2 gas mixtures. The screening strategies undertaken in this study led to the production of 2.03 ± 0.05 g/L of 2,3-BDO, which is unprecedented in serum bottle experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.