IntroductionIncreased vascular permeability represents one of the hallmarks of sepsis. In the kidney, vascular permeability is strictly regulated by the 'glomerular filtration barrier' (GFB), which is comprised of glomerular endothelium, podocytes, their interposed basement membranes and the associated glycocalyx. Although it is likely that the GFB and its glycocalyx are altered during sepsis, no study has specifically addressed this issue. The aim of this study was to evaluate whether albuminuria -- the hallmark of GFB perm-selectivity -- occurs in the initial stage of sepsis and whether it is associated with morphological and biochemical changes of the GFB.MethodsCecal ligation and puncture (CLP) was used to induce sepsis in the rat. Tumor necrosis factor (TNF)-alpha levels in plasma and growth of microorganisms in the peritoneal fluid were evaluated at 0, 3 and 7 hours after CLP or sham-operation. At the same times, kidney specimens were collected and structural and ultrastructural alterations in the GFB were assessed. In addition, several components of GFB-associated glycocalyx, syndecan-1, hyluronan (HA) and sialic acids were evaluated by immunofluorescence, immunohistochemistry and lectin histochemistry techniques. Serum creatinine and creatinine clearance were measured to assess kidney function and albuminuria for changes in GFB permeability. Analysis of variance followed by Tukey's multiple comparison test was used.ResultsSeptic rats showed increased TNF-alpha levels and growth of microorganisms in the peritoneal fluid. Only a few renal corpuscles had major ultrastructural and structural alterations and no change in serum creatinine or creatinine clearance was observed. Contrarily, urinary albumin significantly increased after CLP and was associated with diffuse alteration in the glycocalyx of the GFB, which consisted in a decrease in syndecan-1 expression and in HA and sialic acids contents. Sialic acids were also changed in their structure, exhibiting a higher degree of acetylation.ConclusionsIn its initial phase, sepsis is associated with a significant alteration in the composition of the GFB-associated glycocalyx, with loss of GFB perm-selectivity as documented by albumin leakage into urine.
Optimization of programmed atrioventricular delay in dual chamber pacing is essential to the hemodynamic efficiency of the heart. Automatic AV delay optimization in an implanted pacemaker is highly desirable. Variations of peak endocardial acceleration (PEA) with AV delay at rest correlate well with echocardiography derived observations, particularly with end-diastolic filling and mitral valve closure timings. This suggests the possibility of devicing a procedure for the automatic determination of the optimal AV delay. The aim of this study was to compare a proposed algorithm for optimal AV delay determination with an accepted echocardiographic method. Fifteen patients with high degree AV block received BEST-Living pacing systems. Automatic AV delay scans were performed at rest (60-300 ms in 20-ms steps with 60 beats per step) in DDD at 90 ppm, while simultaneously recording cycle-by-cycle PEA values, which were averaged for each AV delay to obtain a PEA versus AV delay curve. Nonlinear regression analysis based on a Boltzmann sigmoid curve was performed, and the optimal AV delay (OAVD) was chosen as the sigmoid inflection point of the regression curve. The OAVD was also evaluated for each patient using the Ritter echocardiographic method. Good sigmoid fit was obtained in 13 of 15 patients. The mean OAVD obtained by the PEA sigmoid algorithm was 146.9 +/- 32.1 ms, and the corresponding result obtained by echocardiography was 156.4 +/- 34.3 ms (range 31.8-39.7 ms). Correlation analysis yielded r = 0.79, P = 0.0012. In conclusion, OAVD estimates obtained by PEA analysis during automatic AV delay scanning are consistent with those obtained by echocardiography. The proposed algorithm can be used for automatic OAVD determination in an implanted pacemaker pulse generator.
The significantly heightened mortality caused by the superimposition of sepsis upon traumatic brain injury can be reduced by administration of both antibiotics but only minocycline can decrease the extent of cell death in selectively cortical and hippocampal brain regions, via, in part, a reduction in cerebral inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.