A 6-week study was conducted at the University of Colorado Art Museum, during which volatile organic compounds (VOCs), carbon dioxide (CO2), ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), other trace gases, and submicron aerosol were measured continuously. These measurements were then analyzed using a box model to quantify the rates of major processes that transformed the composition of the air. VOC emission factors were quantified for museum occupants and their activities. The deposition of VOCs to surfaces was quantified across a range of VOC saturation vapor concentrations (C*) and Henry’s Law constants (H) and determined to be a major sink for VOCs with C* < 108 μg m–3 and H > 102 M atm–1. The reaction rates of VOCs with O3, OH radicals, and nitrate (NO3) radicals were quantified, with unsaturated and saturated VOCs having oxidation lifetimes of >5 and >15 h, making deposition to surfaces and ventilation the dominant VOC sinks in the museum. O3 loss rates were quantified inside a museum gallery, where reactions with surfaces, NO, occupants, and NO2 accounted for 62%, 31%, 5%, and 2% of the O3 sink. The measured concentrations of acetic acid, formic acid, NO2, O3, particulate matter, sulfur dioxide, and total VOCs were below the guidelines for museums.
art museum was measured by a suite of gas-and particlephase instruments. Over 80% of the total observed organic carbon (TOOC) mass (100 μg m −3 ) consisted of reduced compounds (carbon oxidation state, OS C < −0.5) with high volatility (log 10 C* > 7) and low carbon number (n C < 6). The museum TOOC was compared to other indoor and outdoor locations, which increased according to the following trend: remote < rural ≤ urban < indoor ≤ megacity. The museum TOOC was comparable to a university classroom and 3× less than residential environments. Trends in the total reactive flux were remote < indoor < rural < urban < megacity. High volatile organic compound (VOC) concentrations compensated low oxidant concentrations indoors to result in an appreciable reactive flux. Total hydroxyl radical (OH), ozone (O 3 ), nitrate radical (NO 3 ), and chlorine atom (Cl) reactivities for each location followed a similar trend to TOOC. High human occupancy events increased all oxidant reactivities in the museum by 65−125%. The lifetimes of O 3 , NO 3 , OH, and Cl reactivities were 13 h, 15 h, 23 days, and 189 days, respectively, corresponding to over 88% of indoor VOC oxidant reactivity being consumed outdoors after ventilation.
The increased risk of chemical warfare agent usage around the world has intensified the search for high-surface-area materials that can strongly adsorb and actively decompose chemical warfare agents. Dimethyl methylphosphonate (DMMP) is a widely used simulant molecule in laboratory studies for the investigation of the adsorption and decomposition behavior of sarin (GB) gas. In this paper, we explore how DMMP interacts with the as-synthesized mesoporous CeO2. Our mass spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements indicate that DMMP can dissociate on mesoporous CeO2 at room temperature. Two DMMP dissociation pathways are observed. Based on our characterization of the as-synthesized material, we built the pristine and hydroxylated (110) and (111) CeO2 surfaces and simulated the DMMP interaction on these surfaces with density functional theory modeling. Our calculations reveal an extremely low activation energy barrier for DMMP dissociation on the (111) pristine CeO2 surface, which very likely leads to the high activity of mesoporous CeO2 for DMMP decomposition at room temperature. The two reaction pathways are possibly due to the DMMP dissociation on the pristine and hydroxylated CeO2 surfaces. The significantly higher activation energy barrier for DMMP to decompose on the hydroxylated CeO2 surface implies that such a reaction on the hydroxylated CeO2 surface may occur at higher temperatures or proceed after the pristine CeO2 surfaces are saturated.
Partitioning to surfaces is an important sink for volatile organic compounds (VOCs) indoors, but the mechanisms are not well understood or quantified. Here, a mass spectrometer was coupled to a portable surface reactor and a flow tube to measure partitioning of VOCs into paint films coated onto glass or wallboard, and their subsequent diffusion. A model was developed to extract values of the effective absorbing organic mass concentration of the film, Cw, which is a measure of absorption capacity, and VOC diffusion coefficients, Df, from VOC time profiles measured during film passivation and depassivation. Values of Cw agreed well with the value estimated from the paint film mass and flow tube air volume, and Df values (also measured using attenuated total reflectance‐Fourier transform infrared spectroscopy) correlated well with VOC vapor saturation concentrations, C*, estimated using a group contribution method. The value of these relationships for estimating key parameters that control VOC partitioning into paint and the fate of VOCs indoors was demonstrated using a house model, which indicated that >50% of VOCs with C* ≤108 μg/m3 (C* of octane, hexanone, and propanol) that contacted a paint film of typical thickness fully permeated the film regardless of emission duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.