Collision avoidance is a critical task in many applications, such as ADAS (advanced driver-assistance systems), industrial automation and robotics. In an industrial automation setting, certain areas should be off limits to an automated vehicle for protection of people and high-valued assets. These areas can be quarantined by mapping (e.g., GPS) or via beacons that delineate a no-entry area. We propose a delineation method where the industrial vehicle utilizes a LiDAR (Light Detection and Ranging) and a single color camera to detect passive beacons and model-predictive control to stop the vehicle from entering a restricted space. The beacons are standard orange traffic cones with a highly reflective vertical pole attached. The LiDAR can readily detect these beacons, but suffers from false positives due to other reflective surfaces such as worker safety vests. Herein, we put forth a method for reducing false positive detection from the LiDAR by projecting the beacons in the camera imagery via a deep learning method and validating the detection using a neural network-learned projection from the camera to the LiDAR space. Experimental data collected at Mississippi State University's Center for Advanced Vehicular Systems (CAVS) shows the effectiveness of the proposed system in keeping the true detection while mitigating false positives.
Machine-learning (ML) requires human-labeled “truth” data to train and test. Acquiring and labeling this data can often be the most time-consuming and expensive part of developing trained models of convolutional neural networks (CNN). In this work, we show that an automated workflow using automatically labeled synthetic data can be used to drastically reduce the time and effort required to train a machine learning algorithm for detecting buildings in aerial imagery acquired with low-flying unmanned aerial vehicles. The MSU Autonomous Vehicle Simulator (MAVS) was used in this work, and the process for integrating MAVS into an automated workflow is presented in this work, along with results for building detection with real and simulated images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.