The geographic distribution and habitat association of most mammalian polymorphic phenotypes are still poorly known, hampering assessments of their adaptive significance. Even in the case of the black panther, an iconic melanistic variant of the leopard (Panthera pardus), no map exists describing its distribution. We constructed a large database of verified records sampled across the species’ range, and used it to map the geographic occurrence of melanism. We then estimated the potential distribution of melanistic and non-melanistic leopards using niche-modeling algorithms. The overall frequency of melanism was ca. 11%, with a significantly non-random spatial distribution. Distinct habitat types presented significantly different frequencies of melanism, which increased in Asian moist forests and approached zero across most open/dry biomes. Niche modeling indicated that the potential distributions of the two phenotypes were distinct, with significant differences in habitat suitability and rejection of niche equivalency between them. We conclude that melanism in leopards is strongly affected by natural selection, likely driven by efficacy of camouflage and/or thermoregulation in different habitats, along with an effect of moisture that goes beyond its influence on vegetation type. Our results support classical hypotheses of adaptive coloration in animals (e.g. Gloger’s rule), and open up new avenues for in-depth evolutionary analyses of melanism in mammals.
This work proposes a differential evolution algorithm to control a vehicle-to-grid (V2G) system based on photovoltaic generation and energy cost curves, and constraints associated with the power converters’ operation, battery charging strategy, and initial budgets. The algorithm is designed to trade off the batteries’ state of charge and the profits gained from selling energy to the grid. To achieve this balance, a fuzzy controller is employed and acts based on forecasts of the photovoltaic generation and the cost of electricity, within prediction windows of 120 min, adapting the batteries’ rate of charging or discharging. Simulation results show that for different curves and different initial budgets, the target state of charge is reached at the end of the time horizon. By evaluating the proposed scheme under different scenarios, the algorithm’s performance is proven to be suitable for future practical deployment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.