The monitoring and management of species depends on reliable population estimates, and this can be both difficult and very costly for cryptic large vertebrates that live in forested habitats. Recently developed camera trapping techniques have already been shown to be an effective means of making mark-recapture estimates of individually identifiable animals (e.g. tigers). Camera traps also provide a new method for surveying animal abundance. Through computer simulations, and an analysis of the rates of camera trap capture from 19 studies of tigers across the species' range, we show that the number of camera days/tiger photograph correlates with independent estimates of tiger density. This statistic does not rely on individual identity and is particularly useful for estimating the population density of species that are not individually identifiable. Finally, we used the comparison between observed trapping rates and the computer simulations to estimate the minimum effort required to determine that tigers, or other species, do not exist in an area, a measure that is critical for conservation planning.
For the vast majority of cases, it is highly unlikely that all the individuals of a population will be encountered during a study. Furthermore, it is unlikely that a constant fraction of the population is encountered over times, locations, or species to be compared. Hence, simple counts usually will not be good indices of population size. We recommend that detection probabilities (the probability of including an individual in a count) be estimated and incorporated into inference procedures. However, most techniques for estimating detection probability require moderate sample sizes, which may not be achievable when studying rare species. In order to improve the reliability of inferences from studies of rare species, we suggest two general approaches that researchers may wish to consider that incorporate the concept of imperfect detectability: (1) borrowing information about detectability or the other quantities of interest from other times, places, or species; and (2) using state variables other than abundance (e.g., species richness and occupancy). We illustrate these suggestions with examples and discuss the relative benefits and drawbacks of each approach.
The geographic distribution and habitat association of most mammalian polymorphic phenotypes are still poorly known, hampering assessments of their adaptive significance. Even in the case of the black panther, an iconic melanistic variant of the leopard (Panthera pardus), no map exists describing its distribution. We constructed a large database of verified records sampled across the species’ range, and used it to map the geographic occurrence of melanism. We then estimated the potential distribution of melanistic and non-melanistic leopards using niche-modeling algorithms. The overall frequency of melanism was ca. 11%, with a significantly non-random spatial distribution. Distinct habitat types presented significantly different frequencies of melanism, which increased in Asian moist forests and approached zero across most open/dry biomes. Niche modeling indicated that the potential distributions of the two phenotypes were distinct, with significant differences in habitat suitability and rejection of niche equivalency between them. We conclude that melanism in leopards is strongly affected by natural selection, likely driven by efficacy of camouflage and/or thermoregulation in different habitats, along with an effect of moisture that goes beyond its influence on vegetation type. Our results support classical hypotheses of adaptive coloration in animals (e.g. Gloger’s rule), and open up new avenues for in-depth evolutionary analyses of melanism in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.