The oxidation mechanism of metals depends, among other factors, on the surface integrity. The surface and rim zone properties are often determined by the manufacturing process that was used to machine the material. Laser chemical machining (LCM) is a manufacturing process that uses laser radiation as a localized and selective heat source to activate a chemical reaction between an electrolyte and a metallic surface. The objective of this work is first to investigate how different LCM processes affect the rim zone properties of 42CrMo4. For this purpose, the surface chemistry is analyzed by EDS and XPS, phases and residual stresses are determined by XRD, and the morphology is investigated by SEM. Second, the influence of these modified rim zones on the oxidation properties of the steel at 500 °C in air is to be demonstrated in oxidation tests by in situ XRD and subsequent SEM/EDS investigations. A decisive influence of the oxides formed on the surface of 42CrMo4 during LCM in different electrolytes (NaNO3 solution and H3PO4) at two different laser powers on the high-temperature oxidation properties was demonstrated. These oxides were supposed to act as nucleation sites for oxide layer formation at 500 °C and led to an overall increase in oxide layer thickness after high-temperature oxidation compared to non-LCM-processed surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.