In this article we propose a compartmental model for the dynamics of Coronavirus Disease 2019 . We take into account the presence of asymptomatic infections and the main policies that have been adopted so far to contain the epidemic: isolation (or social distancing) of a portion of the population, quarantine for confirmed cases and testing. We model isolation by separating the population in two groups: one composed by key-workers that keep working during the pandemic and have a usual contact rate, and a second group consisting of people that are enforced/recommended to stay at home. We refer to quarantine as strict isolation, and it is applied to confirmed infected cases.In the proposed model, the proportion of people in isolation, the level of contact reduction and the testing rate are control parameters that can vary in time, representing policies that evolve in different stages. We obtain an explicit expression for the basic reproduction number R 0 in terms of the parameters of the disease and of the control policies. In this way we can quantify the effect that isolation and testing have in the evolution of the epidemic. We present a series of simulations to illustrate different realistic scenarios. From the expression of R 0 and the simulations we conclude that isolation (social distancing) and testing among asymptomatic cases are fundamental actions to control the epidemic, and the stricter these measures are and the sooner they are implemented, the more lives can be saved. Additionally, we show that people that remain in isolation significantly reduce their probability of contagion, so risk groups should be recommended to maintain a low contact rate during the course of the epidemic.
In this article we propose a compartmental model for the dynamics of Coronavirus Disease 2019 (COVID-19). We take into account the presence of asymptomatic infections and the main policies that have been adopted so far to contain the epidemic: isolation (or social distancing) of a portion of the population, quarantine for confirmed cases and testing. We model isolation by separating the population in two groups: one composed by key-workers that keep working during the pandemic and have a usual contact rate, and a second group consisting of people that are enforced/recommended to stay at home. We refer to quarantine as strict isolation, and it is applied to confirmed infected cases. In the proposed model, the proportion of people in isolation, the level of contact reduction and the testing rate are control parameters that can vary in time, representing policies that evolve in different stages. We obtain an explicit expression for the basic reproduction number R0 in terms of the parameters of the disease and of the control policies. In this way we can quantify the effect that isolation and testing have in the evolution of the epidemic. We present a series of simulations to illustrate different realistic scenarios. From the expression of R0 and the simulations we conclude that isolation (social distancing) and testing among asymptomatic cases are fundamental actions to control the epidemic, and the stricter these measures are and the sooner they are implemented, the more lives can be saved. Additionally, we show that people that remain in isolation significantly reduce their probability of contagion, so risk groups should be recommended to maintain a low contact rate during the course of the epidemic.
In this work we fit an epidemiological model SEIAQR (Susceptible - Exposed - Infectious - Asymptomatic - Quarantined - Removed) to the data of the first COVID-19 outbreak in Rio de Janeiro, Brazil. Particular emphasis is given to the unreported rate, that is, the proportion of infected individuals that is not detected by the health system. The evaluation of the parameters of the model is based on a combination of error-weighted least squares method and appropriate B-splines. The structural and practical identifiability is analyzed to support the feasibility and robustness of the parameters' estimation. We use the bootstrap method to quantify the uncertainty of the estimates. For the outbreak of March-July 2020 in Rio de Janeiro, we estimate about 90% of unreported cases, with a 95% confidence interval (85%, 93%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.