An unlocated shaft failure in the high pressure turbine spool of an engine may result in a complex orbiting motion along with rearward axial displacement of the high pressure turbine rotor sub-assembly. This is due to the action of resultant forces and limitations imposed by constraints such as the bearings and turbine casing. Such motion of the rotor following an unlocated shaft failure, results in the development of multiple contacts between the components of the rotor sub-assembly, the turbine casing, and the downstream stator casing. Typically, in the case of shrouded rotor blades, the tip region is in the form of a seal with radial protrusions called ‘fins’ between the rotor blade and the turbine casing. The contact between the rotor blade and the turbine casing will therefore result in excessive wear of the tip seal fins, resulting in changes in the geometry of the tip seal domain that affects the characteristics of the tip leakage vortex. The rotor sub-assembly with worn seals may also be axially displaced rearwards, and consequent to this displacement, changes in the geometry of the rotor blade may occur because of the contact between the rotor sub-assembly and the downstream stator casing. An integrated approach of structural analyses, secondary air system dynamics, and 3D CFD is adopted in the present study to quantify the effect of the tip seal damage and axial displacement on the aerodynamic performance of the turbine stage. The resultant geometry after wearing down of the fins in the tip seal, and rearward axial displacement of the rotor sub-assembly is obtained from LS-DYNA simulations. 3D RANS analyses are carried out to quantify the aerodynamic performance of the turbine with worn fins in the tip seal at three different axial displacement locations i.e. 0 mm, 10 mm and 15 mm. The turbine performance parameters are then compared with equivalent cases in which the fins in the tip seal are intact for the same turbine axial displacement locations. From this study it is noted that the wearing of tip seal fins results in reduced turbine torque, power output and efficiency, consequent to changes in the flow behaviour in the turbine passages. The reduction in turbine torque will result in the reduction of the terminal speed of the rotor during an unlocated shaft failure. Therefore, a design modification that can lead to rapid wearing of the fins in the tip seal after an unlocated shaft failure holds promise for the management of a potential over-speed event.
The rotor sub-assembly of the high-pressure turbine of a modern turbofan engine is typically free to move downstream because of the force imbalance acting on the disc and blades following an un-located shaft failure. This downstream movement results in a change in the geometry of the rotor blade, tip seals and rim/platform seals because of the interaction of the rotor sub-assembly with the downstream vane sub-assembly. Additionally, there is a change in the leakage flow properties, which mix with the main flow because of the change in engine behaviour and secondary air system dynamics. In the present work, the changes in geometry following the downstream movement of the turbine, are obtained from a validated friction model and structural LS-DYNA simulations. Changes in leakage flow properties are obtained from a transient network source-sink secondary air system model. Three-dimensional Reynolds-averaged Navier-Stokes simulations are used to evaluate the aerodynamic effect from the inclusion of the leakage flows, tipseal domains, and downstream movement of the rotor for three displacement configurations (i.e. 0, 10 and 15 mm) with appropriate changes in geometry and leakage flow conditions. It is observed from the results that there is a significant reduction in the expansion ratio, torque and power produced by the turbine with the downstream movement of the rotor because of changes in the flow behaviour for the different configurations. These changes in turbine performance parameters are necessary to accurately predict the terminal speed of the rotor using an engine thermodynamic model. Further, it is to be noted that such reductions in turbine rotor torque will result in a reduction of the terminal speed attained by the rotor during an un-located shaft failure. Therefore the terminal speed of the rotor can be controlled by introducing design features that will result in the rapid rearward displacement of the turbine rotor.
In this paper, an integrated approach to turbine overspeed analysis is presented, taking into account the secondary air system dynamics and mechanical friction in a turbine assembly following an unlocated high-pressure shaft failure. The axial load acting on the rotating turbine assembly is a governing parameter in terms of overspeed protection since it governs the level of mechanical friction which acts against the turbine acceleration due to gas torque. The axial load is dependent on both the force coming from secondary air system cavities surrounding the disc and the force on the rotor blades. It is highly affected by secondary air system dynamics because rotor movement modifies the geometry of seals and flow paths within the network. As a result, the primary parameters of interest in this study are the axial load on the turbine rotor, the friction torque between rotating and static structures and the axial position of the rotor.Following an initial review of potential damage scenarios, several cases are run to establish the effect of each damage scenario and variable parameter within the model, with comparisons being made to a baseline case in which no interactions are modelled. This allows important aspects of the secondary air system to be identified in terms of overspeed prevention, as well as guidelines on design changes in current and future networks that will be beneficial for overspeed prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.