Event-based landslide inventories are essential sources to broaden our understanding of the causal relationship between triggering events and the occurring landslides. Moreover, detailed inventories are crucial for the succeeding phases of landslide risk studies like susceptibility and hazard assessment. The openly available inventories differ in the quality and completeness levels. Event-based landslide inventories are created based on manual interpretation, and there can be significant differences in the mapping preferences among interpreters. To address this issue, we used two different datasets to analyze the potential of U-Net and machine learning approaches for automated landslide detection in the Himalayas. Dataset-1 is composed of five optical bands from the RapidEye satellite imagery. Dataset-2 is composed of the RapidEye optical data, and ALOS-PALSAR derived topographical data. We used a small dataset consisting of 239 samples acquired from several training zones and one testing zone to evaluate our models’ performance using the fully convolutional U-Net model, Support Vector Machines (SVM), K-Nearest Neighbor, and the Random Forest (RF). We created thirty-two different maps to evaluate and understand the implications of different sample patch sizes and their effect on the accuracy of landslide detection in the study area. The results were then compared against the manually interpreted inventory compiled using fieldwork and visual interpretation of the RapidEye satellite image. We used accuracy assessment metrics such as F1-score, Precision, Recall, and Mathews Correlation Coefficient (MCC). In the context of the Nepali Himalayas, employing RapidEye images and machine learning models, a viable patch size was investigated. The U-Net model trained with 128 × 128 pixel patch size yields the best MCC results (76.59%) with the dataset-1. The added information from the digital elevation model benefited the overall detection of landslides. However, it does not improve the model’s overall accuracy but helps differentiate human settlement areas and river sand bars. In this study, the U-Net achieved slightly better results than other machine learning approaches. Although it can depend on architecture of the U-Net model and the complexity of the geographical features in the imagery, the U-Net model is still preliminary in the domain of landslide detection. There is very little literature available related to the use of U-Net for landslide detection. This study is one of the first efforts of using U-Net for landslide detection in the Himalayas. Nevertheless, U-Net has the potential to improve further automated landslide detection in the future for varied topographical and geomorphological scenes.
Automatic landslide mapping is crucial for a fast response in a disaster scenario and improving landslide susceptibility models. Recent studies highlighted the potential of deep learning methods for automatic landslide segmentation. However, only a few works discuss the generalization capacity of these models to segment landslides in areas that differ from the ones used to train the models. In this study, we evaluated three different locations to assess the generalization capacity of these models in areas with similar and different environmental aspects. The model training consisted of three distinct datasets created with RapidEye satellite images, Normalized Vegetation Index (NDVI), and a digital elevation model (DEM). Here, we show that larger patch sizes (128 × 128 and 256 × 256 pixels) favor the detection of landslides in areas similar to the training area, while models trained with smaller patch sizes (32 × 32 and 64 × 64 pixels) are better for landslide detection in areas with different environmental aspects. In addition, we found that the NDVI layer helped to balance the model’s results and that morphological post-processing operations are efficient for improving the segmentation precision results. Our research highlights the potential of deep learning models for segmenting landslides in different areas and is a starting point for more sophisticated investigations that evaluate model generalization in images from various sensors and resolutions.
Abstract. Multiple landslide events occur often across the world which have the potential to cause significant harm to both human life and property. Although a substantial amount of research has been conducted to address mapping of landslides using Earth observation (EO) data, several gaps and uncertainties remain with developing models to be operational at the global scale. The lack of a high-resolution globally distributed and event-diverse dataset for landslide segmentation poses a challenge in developing machine learning models that can accurately and robustly detect landslides in various regions, as the limited representation of landslide and background classes can result in poor generalization performance of the models. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD), a high-resolution (HR) satellite dataset (PlanetScope, 3 m pixel resolution) for landslide mapping composed of landslide instances from 10 different physiographical regions globally in South and South-East Asia, East Asia, South America, and Central America. The dataset contains five rainfall-triggered and five earthquake-triggered multiple landslide events that occurred in varying geomorphological and topographical regions in the form of standardized image patches containing four PlanetScope image bands (red, green, blue, and NIR) and a binary mask for landslide detection. The HR-GLDD can be accessed through this link: https://doi.org/10.5281/zenodo.7189381 (Meena et al., 2022a, c). HR-GLDD is one of the first datasets for landslide detection generated by high-resolution satellite imagery which can be useful for applications in artificial intelligence for landslide segmentation and detection studies. Five state-of-the-art deep learning models were used to test the transferability and robustness of the HR-GLDD. Moreover, three recent landslide events were used for testing the performance and usability of the dataset to comment on the detection of newly occurring significant landslide events. The deep learning models showed similar results when testing the HR-GLDD at individual test sites, thereby indicating the robustness of the dataset for such purposes. The HR-GLDD is open access and it has the potential to calibrate and develop models to produce reliable inventories using high-resolution satellite imagery after the occurrence of new significant landslide events. The HR-GLDD will be updated regularly by integrating data from new landslide events.
Monitoring the vegetation structure and species composition of forest restoration (FR) in the Brazilian Amazon is critical to ensuring its long-term benefits. Since remotely piloted aircrafts (RPAs) associated with deep learning (DL) are becoming powerful tools for vegetation monitoring, this study aims to use DL to automatically map individual crowns of Vismia (low resilience recovery indicator), Cecropia (fast recovery indicator), and trees in general (this study refers to individual crowns of all trees regardless of species as All Trees). Since All Trees can be accurately mapped, this study also aims to propose a tree crown heterogeneity index (TCHI), which estimates species diversity based on: the heterogeneity attributes/parameters of the RPA image inside the All Trees results; and the Shannon index measured by traditional fieldwork. Regarding the DL methods, this work evaluated the accuracy of the detection of individual objects, the quality of the delineation outlines and the area distribution. Except for Vismia delineation (IoU = 0.2), DL results presented accurate values in general, as F1 and IoU were always greater than 0.7 and 0.55, respectively, while Cecropia presented the most accurate results: F1 = 0.85 and IoU = 0.77. Since All Trees results were accurate, the TCHI was obtained through regression analysis between the canopy height model (CHM) heterogeneity attributes and the field plot data. Although TCHI presented robust parameters, such as p-value < 0.05, its results are considered preliminary because more data are needed to include different FR situations. Thus, the results of this work show that low-cost RPA has great potential for monitoring FR quality in the Amazon, because Vismia, Cecropia, and All Trees can be automatically mapped. Moreover, the TCHI preliminary results showed high potential in estimating species diversity. Future studies must assess domain adaptation methods for the DL results and different FR situations to improve the TCHI range of action.
Abstract. Multiple landslide events occur often across the world which has the potential to cause significant harm to both human life and property. Although a substantial amount of research has been conducted to address mapping of landslides using Earth Observation (EO) data, several gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the HR-GLDD, a high resolution (HR) dataset for landslide mapping composed of landslide instances from ten different physiographical regions globally: South and South-East Asia, East Asia, South America, and Central America. The dataset contains five rainfall triggered and five earthquake-triggered multiple landslide events that occurred in varying geomorphological and topographical regions. HR-GLDD is one of the first datasets for landslide detection generated by high-resolution satellite imagery which can be useful for applications in artificial intelligence for landslide segmentation and detection studies. Five state-of-the-art deep learning models were used to test the transferability and robustness of the HR-GLDD. Moreover, two recent landslide events were used for testing the performance and usability of the dataset to comment on the detection of newly occurring significant landslide events. The deep learning models showed similar results for testing the HR-GLDD in individual test sites thereby indicating the robustness of the dataset for such purposes. The HR-GLDD can be accessed open access and it has the potential to calibrate and develop models to produce reliable inventories using high-resolution satellite imagery after the occurrence of new significant landslide events. The HR-GLDD will be updated regularly by integrating data from new landslide events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.