This paper addresses the use of a data analysis tool, known as robust principal component analysis (RPCA), in the context of change detection (CD) in ultrawideband (UWB) very high-frequency (VHF) synthetic aperture radar (SAR) images. The method considers image pairs of the same scene acquired at different time instants. The CD method aims to maximize the probability of detection (PD) and minimize the false alarm rate (FAR). Such aim fits into a multiobjective optimization problem, since maximizing the probability of detection generally implies an increase in the number of false alarms. In that sense, varying the RPCA regularization parameter leads to PD variation with respect to FAR, which is known as receiver operating characteristic (ROC) curve. To evaluate the proposed method, the CARABAS-II data set was considered. The experimental results show that RPCA via principal component pursuit (PCP) can provide a good trade-off between PD and FAR. A comparison between the results obtained with the proposed method and a classical CD algorithm based on the likelihood ratio test provides the pros and cons of the proposed method.
This article aims at performing maritime target classification in SAR images using machine learning (ML) and deep learning (DL) techniques. In particular, the targets of interest are oil platforms and ships located in the Campos Basin, Brazil. Two convolutional neural networks (CNNs), VGG-16 and VGG-19, were used for attribute extraction. The logistic regression (LR), random forest (RF), support vector machine (SVM), k-nearest neighbours (kNN), decision tree (DT), naive Bayes (NB), neural networks (NET), and AdaBoost (ADBST) schemes were considered for classification. The target classification methods were evaluated using polarimetric images obtained from the C-band synthetic aperture radar (SAR) system Sentinel-1. Classifiers are assessed by the accuracy indicator. The LR, SVM, NET, and stacking results indicate better performance, with accuracy ranging from 84.1% to 85.5%. The Kruskal–Wallis test shows a significant difference with the tested classifier, indicating that some classifiers present different accuracy results. The optimizations provide results with more significant accuracy gains, making them competitive with those shown in the literature. There is no exact combination of methods for SAR image classification that will always guarantee the best accuracy. The optimizations performed in this article were for the specific data set of the Campos Basin, and results may change depending on the data set format and the number of images.
Recently, it was demonstrated that low-frequency wavelength-resolution synthetic aperture radar (SAR) images could be considered to follow an additive mixing model due to their backscatter characteristics. This simplification allows for the use of source separation methods, such as robust principal component analysis (RPCA) via principal component pursuit (PCP), for detecting changes in those images. In this manuscript, a change detection method for wavelength-resolution SAR images based on image stack through RPCA is proposed. The method aims to explore both the temporal and flight heading diversity of a set of wavelength-resolution multitemporal SAR images in order to detect concealed targets in forestry areas. A heuristic based on three rules for better exploring the RPCA results is introduced, and a new configurable parameter for false alarm reduction based on the analysis of image windows is proposed. The method is evaluated using real data obtained from measurements of the ultrawideband (UWB) very high-frequency (VHF) SAR system CARABAS-II. Experiments for stacks of four and seven reference images are conducted, and the use of reference images acquired with different flight headings is explored. The results indicate that a gain in performance can be achieved by using large image stacks containing, at least, one image of each possible flight heading of the data set, which can result in a probability of detection (PD) above 99% for a false alarm rate (FAR) as low as one false alarm per three square kilometers. Furthermore, it is demonstrated that high PD and low FAR can be achieved, also considering images from similar flight headings as reference images.
The present study aimed to perform degumming and neutralization steps of crude oil from rice bran. The degumming was studied through a central composite rotational design where the study variables were the amount of water added and temperature and the response variable was phosphorus content. In the neutralization study, a complete experimental design was used, with the study variables being temperature and amount of NaOH solution added, while the response variables were acidity and c-oryzanol content. The best working region for degumming was in the condition of 5% water and a temperature of 58C, under this condition the oil showed a phosphorus contentof 4.10 mg/100 g. In the neutralization step, the best condition was 60C and an addition of 20% excess soda, where an acidity of 0.41% oleic acid and c-oryzanol content of 1.10% was obtained.
Resumo-Este artigo apresenta um estudo sobre a influência de operações morfológicas em imagens de radar de abertura sintética (SAR) em banda VHF. Para avaliar os diferentes elementos estruturantes considerados nas operações morfológicas, utiliza-se o algoritmo de detecção de alvos proposto pela Swedish Defence Research Agency (FOI) e os dados obtidos pelo sistema SAR CARABAS II. As métricas de desempenho consideradas no estudo foram a probabilidade de detecção de alvos e a taxa de falso alarme. Como resultado, constata-se que a geometria do elemento estruturante considerado nas operações morfológicas influencia significativamente no desempenho do algoritmo de detecção de alvos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.