A simple and high yield synthesis of water-soluble arylazopyrazoles (AAPs) featuring superior photophysical properties is reported. The introduction of a carboxylic acid allows the diverse functionalization of AAPs. Based on structural modifications of the switching unit the photophysical properties of the AAPs could be tuned to obtain molecular switches with favorable photostationary states. Furthermore, AAPs form stable and light-responsive host-guest complexes with β-cyclodextrin (β-CD). Our most efficient AAP shows binding affinities comparable to azobenzenes, but more effective switching and higher thermal stability of the Z-isomer. As a proof-of-principle, we investigated two CD-based supramolecular systems, containing either cyclodextrin vesicles (CDVs) or cyclodextrin-functionalized gold nanoparticles (CDAuNPs), which revealed excellent reversible, light-responsive aggregation and dispersion behavior. To conclude, AAPs have great potential to be incorporated as molecular switches in highly demanding and multivalent photoresponsive systems.
Vitrimers, an emerging field of research, in which still many fundamental aspects of material design remain to be explored. Here, we systematically explore the effect of the choice of the matrix on a dynamic exchange reaction in a polymer network.
Getting the green light! Substituted arylazopyrazoles (AAPs) have been investigated as supramolecular photoswitches in aqueous solution. Selective photostationary states (PSSs) and improved binding affinities to β-cyclodextrin have been determined. The experimental findings are supported by results from DFT calculations.
Triazolinedione (TAD) click reactions were combined with microcontact chemistry to print, erase, and reprint polymer brushes on surfaces. By patterning substrates with a TAD-tagged atom-transfer radical polymerization initiator (ATRP-TAD) and subsequent surface initiated ATRP, it was possible to graft micropatterned polymer brushes from both alkene- and indole-functionalized substrates. As a result of the dynamic nature of the Alder-ene adduct of TAD and indole at elevated temperatures, the polymer pattern could be erased while the regenerated indole substrate could be reused to print new patterns. To demonstrate the robustness of the methodology, the write-erase cycle was repeated four times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.