A simple and high yield synthesis of water-soluble arylazopyrazoles (AAPs) featuring superior photophysical properties is reported. The introduction of a carboxylic acid allows the diverse functionalization of AAPs. Based on structural modifications of the switching unit the photophysical properties of the AAPs could be tuned to obtain molecular switches with favorable photostationary states. Furthermore, AAPs form stable and light-responsive host-guest complexes with β-cyclodextrin (β-CD). Our most efficient AAP shows binding affinities comparable to azobenzenes, but more effective switching and higher thermal stability of the Z-isomer. As a proof-of-principle, we investigated two CD-based supramolecular systems, containing either cyclodextrin vesicles (CDVs) or cyclodextrin-functionalized gold nanoparticles (CDAuNPs), which revealed excellent reversible, light-responsive aggregation and dispersion behavior. To conclude, AAPs have great potential to be incorporated as molecular switches in highly demanding and multivalent photoresponsive systems.
β-sheet-encoded anionic and cationic dendritic peptide amphiphiles form supramolecular copolymers when self-assembled in a 1:1 feed ratio of the monomers. These ampholytic materials have been designed for on-off polymerization in response to pH triggers. The cooperative supramolecular self-assembly process is switched on at a physiologically relevant pH value and can be switched off by increasing or decreasing the pH value.
Quantitative density measurements from electron scattering show that shear bands in deformed Al 88 Y 7 Fe 5 metallic glass exhibit alternating high and low density regions, ranging from -9 % to +6 % relative to the un-deformed matrix. Small deflections of the shear band from the main propagation direction coincide with switches in density from higher to lower than the matrix and vice versa, indicating that faster and slower motion (stick-slip) occurs during the propagation. Nano-beam di↵raction analyses provides clear evidence that the density changes are accompanied by structural changes suggesting that shear alters the packing of tightly-bound short-or mediumrange atomic clusters. This bears a striking resemblance to the packing behavior in granular shear bands formed upon deformation of granular media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.