Assisted gene flow (AGF) is a conservation intervention to accelerate species adaptation to climate change by importing genetic diversity into at-risk populations. Corals exemplify both the need for AGF and its technical challenges; corals have declined in abundance, suffered pervasive reproductive failures, and struggled to adapt to climate change, yet mature corals cannot be easily moved for breeding, and coral gametes lose viability within hours. Here, we report the successful demonstration of AGF in corals using cryopreserved sperm that was frozen for 2 to 10 y. We fertilized Acropora palmata eggs from the western Caribbean (Curaçao) with cryopreserved sperm from genetically distinct populations in the eastern and central Caribbean (Florida and Puerto Rico, respectively). We then confirmed interpopulation parentage in the Curaçao–Florida offspring using 19,696 single-nucleotide polymorphism markers. Thus, we provide evidence of reproductive compatibility of a Caribbean coral across a recognized barrier to gene flow. The 6-mo survival of AGF offspring was 42%, the highest ever achieved in this species, yielding the largest wildlife population ever raised from cryopreserved material. By breeding a critically endangered coral across its range without moving adults, we show that AGF using cryopreservation is a viable conservation tool to increase genetic diversity in threatened marine populations.
Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters.
The widespread loss of stony reef-building coral populations has been compounded by the low settlement and survival of coral juveniles. To rebuild coral communities, restoration practitioners have developed workflows to settle vulnerable coral larvae in the laboratory and outplant settled juveniles back to natural and artificial reefs. These workflows often make use of natural biochemical settlement cues, which are presented to swimming larvae to induce settlement. This paper establishes the potential for inorganic cues to complement these known biochemical effects. Settlement substrates were fabricated from calcium carbonate, a material present naturally on reefs, and modified with additives including sands, glasses, and alkaline earth carbonates. Experiments with larvae of two Caribbean coral species revealed additive-specific settlement preferences that were independent of bulk surface properties such as mean roughness and wettability. Instead, analyses of the substrates suggest that settling coral larvae can detect localized topographical features more than an order of magnitude smaller than their body width and can sense and positively respond to soluble inorganic minerals such as silica (SiO 2 ) and strontianite (SrCO 3 ). These findings open a new area of research in coral reef restoration, in which composite substrates can be designed with a combination of natural organic and inorganic additives to increase larval settlement and perhaps also improve post-settlement growth, mineralization, and defense.
Global change will compromise the population sizes, species ranges, and survival of economically-important plants and animals, including crops, aquaculture species, and foundational ecosystem builders. Scleractinian reef-building corals are a particular concern because they are slow-growing, long-lived, environmentally-sensitive, and concentrated in the warmest regions of the ocean. Assisted Gene Flow (AGF) is considered a viable tool to help natural plant and animal populations, including corals, adapt to changing environments. Our goal was to test for the first time whether cryopreserved coral sperm could be used to facilitate assisted gene flow between genetically-isolated populations of a Caribbean coral. We collected, pooled, and cryopreserved coral sperm from the threatened Caribbean coral Acropora palmata in the western Caribbean (Key Largo, FL), central Caribbean (Rincón, Puerto Rico), and eastern Caribbean (Curaçao). Alongside freshly-collected sperm from Curaçao, the cryopreserved sperm from each of these populations was used for in vitro fertilization experiments with freshlycollected eggs from Curaçao. Across five egg donors, average fertilization success was 91 to 99% for CUR × CUR (fresh sperm) crosses, 37 to 82% for CUR × CUR (frozen sperm) crosses, 3 to 19% for CUR × FL (frozen sperm) crosses and 0 to 24% for CUR × PR (frozen sperm) crosses. Notably, fertilization was achieved in all four categories of crosses, showing for the first time through direct evidence that populations of A. palmata are reproductively compatible, and that genetic diversity can be transferred from one population to another for the purposes of assisted gene flow. The resulting larvae were reared in Curaçao for up to 7 days, then the swimming larvae were transported to Florida for settlement and grow-out at two separate facilities, which achieved larval settlement rates of 37 to 60% across all cohorts. Larvae were reared and settled in Florida to acclimate them to the ambient water quality, microbial environment, and temperature regimes of the western genetic A. palmata population as early in their life cycle as possible. At one month, over 54% all settlers had survived, including over 3500 settlers from CUR x CUR (frozen sperm), 1200 settlers from CUR × FL (frozen sperm), and 230 settlers from CUR × PR (frozen sperm). These experiments represent the first-ever pan-Caribbean coral crosses produced in captivity and the first direct evidence that geographicallyseparated and genetically-isolated populations of any Caribbean coral are reproductively compatible. Moreover, with over 4700 A. palmata settlers produced using cryopreserved sperm, Hagedorn et al. Cryopreservation-Assisted Gene Flow in Elkhorn Coral 3 this represents the largest living wildlife population ever created from cryopreserved material. Together, these findings demonstrate that cryopreservation of coral sperm can enable efficient, large-scale assisted gene flow in corals. This form of assisted migration can not only help to preserve the population-level geneti...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.