All life demands the temporal and spatial control of essential biological functions. In bacteria, the recent discovery of coordinating elements provides a framework to begin to explain cell growth and division. Here we present the discovery of a supramolecular structure in the membrane of the coccal bacterium Staphylococcus aureus, which leads to the formation of a largescale pattern across the entire cell body; this has been unveiled by studying the distribution of essential proteins involved in lipid metabolism (PlsY and CdsA). The organization is found to require MreD, which determines morphology in rod-shaped cells. The distribution of protein complexes can be explained as a spontaneous pattern formation arising from the competition between the energy cost of bending that they impose on the membrane, their entropy of mixing, and the geometric constraints in the system. Our results provide evidence for the existence of a self-organized and nonpercolating molecular scaffold involving MreD as an organizer for optimal cell function and growth based on the intrinsic self-assembling properties of biological molecules.T he perpetuation of all cellular life requires the temporal and spatial management of essential biological functions, within the morphological framework characteristic of a specific organism. The underlying processes, which determine cell shape, are intimately intertwined with cell division and constitute pivotal issues for cell biology; their coordination in prokaryotes is mediated through counterparts of eukaryotic actin, tubulin, and intermediate filaments in addition to other specific components (1, 2). Several of these apparent cytoskeletal elements capitalize on their membrane binding properties, assembling along the longitudinal axis, between the poles of rod-shaped cells; they participate in many processes, including selection of the division site via the Min system and other components (3, 4); guidance and control of the cell wall biosynthetic machinery responsible for cell size, polarity, and shape through the actin-like protein MreB (5-11); and chromosome partitioning into daughter cells using another actin-like filament, ParM (12).Despite this set of highly coordinated mechanisms, it has recently been shown that otherwise rod-and cocci-shaped bacteria can exist as largely spherical wall-less forms known as L-forms, with the capacity to divide (13). Importantly, the division of L-forms of the rod-shaped bacterium Bacillus subtilis is freed from the requirement of the classical tubulin-like division component FtsZ (14). L-forms appear to divide by scission after blebbing, tabulation, or vesiculation dependent on an altered rate of membrane biosynthesis (15); this harks back perhaps to a more evolutionary primitive mechanism permitting cellular proliferation. Thus, are there underlying organizational mechanisms that exist, independent of apparent cytoskeletal elements? The fluid mosaic model proposing the free diffusion of membrane proteins through the lipids has been challenged by growing e...
Many bacteria use population density to control gene expression via quorum sensing. In Vibrio cholerae, quorum sensing coordinates virulence, biofilm formation, and DNA uptake by natural competence. The transcription factors AphA and HapR, expressed at low and high cell density respectively, play a key role. In particular, AphA triggers the entire virulence cascade upon host colonisation. In this work we have mapped genome-wide DNA binding by AphA. We show that AphA is versatile, exhibiting distinct modes of DNA binding and promoter regulation. Unexpectedly, whilst HapR is known to induce natural competence, we demonstrate that AphA also intervenes. Most notably, AphA is a direct repressor of tfoX, the master activator of competence. Hence, production of AphA markedly suppressed DNA uptake; an effect largely circumvented by ectopic expression of tfoX. Our observations suggest dual regulation of competence. At low cell density AphA is a master repressor whilst HapR activates the process at high cell density. Thus, we provide deep mechanistic insight into the role of AphA and highlight how V. cholerae utilises this regulator for diverse purposes.
Background: Tetraspanins are small transmembrane proteins, found in all higher eukaryotes, that compartmentalize cellular membranes through interactions with partner proteins. CD81 is a prototypical tetraspanin and contributes to numerous physiological and pathological processes, including acting as a critical entry receptor for hepatitis C virus (HCV). Antibody engagement of tetraspanins can induce a variety of effects, including actin cytoskeletal rearrangements, activation of MAPK-ERK signaling and cell migration. However, the epitope specificity of most anti-tetraspanin antibodies is not known, limiting mechanistic interpretation of these studies. Methods: We generated a panel of monoclonal antibodies (mAbs) specific for CD81 second extracellular domain (EC2) and performed detailed epitope mapping with a panel of CD81 mutants. All mAbs were screened for their ability to inhibit HCV infection and E2-CD81 association. Nanoscale distribution of cell surface CD81 was investigated by scanning electron microscopy. Results: The antibodies were classified in two epitope groups targeting opposing sides of EC2. We observed a wide range of anti-HCV potencies that were independent of their epitope grouping, but associated with their relative affinity for cell-surface expressed CD81. Scanning electron microscopy identified at least two populations of CD81; monodisperse and higher-order assemblies, consistent with tetraspanin-enriched microdomains. Conclusions: These novel antibodies provide well-characterised tools to investigate CD81 function, including HCV entry, and have the potential to provide insights into tetraspanin biology in general.
E1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy. Thus, HVR-1 is akin to a safety catch that prevents premature triggering of E1E2 activity. Crucially, this mechanism is turned off by host receptor interactions at the cell surface to allow entry. Mutations that reduce conformational entropy in HVR-1, or genetic deletion of HVR-1, turn off the safety catch to generate hyper-reactive HCV that exhibits enhanced virus entry but is thermally unstable and acutely sensitive to neutralising antibodies. Therefore, the HVR-1 safety catch controls the efficiency of virus entry and maintains resistance to neutralising antibodies. This discovery provides an explanation for the ability of HCV to persist in the face of continual immune assault and represents a novel regulatory mechanism that is likely to be found in other viral fusion machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.