Electroencephalogram (EEG) signals are often contaminated with diverse artifacts, such as electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) artifacts. These artifacts make subsequent EEG analysis inaccurate and prevent practical usage. Recently, the use of wearable EEG devices in ambulatory systems has been developed. For practical reasons, these systems usually contain a single EEG channel. Several studies have proposed to combine single-channel decomposition methods with blind source separation (BSS) methods to denoise the single-channel EEG. However, the existing methods have their own limitations since most of them only focus on removing one single kind of artifacts. Unfortunately, the EEG is prone to be contaminated by various kinds of artifacts simultaneously. Yet to our knowledge, there are no existing methods to remove diverse artifacts simultaneously from the singlechannel EEG. To address this issue, we propose an effective method to remove diverse artifacts simultaneously for the single-channel EEG case. This method is a combination of singular spectrum analysis (SSA) and second-order blind identification (SOBI) method. We conduct a semi-simulated study to investigate all possible cases of the single-channel EEG been contaminated by EMG, EOG, and ECG artifacts. The results show that the proposed method can successfully remove diverse artifacts from the single-channel EEG. It is a promising tool for biomedical signal processing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.