Both short-wave infrared (SWIR: 900–1700 nm) and near-infrared (NIR: 650–900 nm) luminescence possess lower optical scattering and higher signal-to-noise in deep tissues than conventional luminescence, gaining increasing attention in biomedicine. Herein, we designed mesoporous silica-coated Yb-doped magnesium germanate nanoparticles (mMGOs) with excellent two-in-one NIR and SWIR persistent luminescence after X-ray irradiation by simply regulating the valence of rare-earth ions, which also possess high cargo loading and a controlled release profile in the tumor region. The investigations in vitro and in vivo showed that mMGOs were repeatedly activated to realize rechargeable persistent luminescence imaging for tracking cargo delivery in mice. Moreover, the stimulative drug-release profile inhibited tumor growth effectively. Both of the X-ray excited two-in-one NIR and SWIR persistent luminescence imaging not only allowed for rechargeable imaging of deep tumors but also achieved long-term tracking with a remarkable tumor inhibition effect.
Radiation therapy is one of the most commonly used methods in clinical cancer treatment, and radiosensitizers could achieve enhanced therapeutic efficacy by incorporating heavy elements into structures. However, the secondary excitation of these high-Z elements-doped nanosensitizers still imply intrinsic defects of low efficiency. Herein, we designed Bi-doped titanium dioxide nanosensitizers in which high-Z Bi ions with adjustable valence state (Bi3+ or Bi4+) replaced some positions of Ti4+ of anatase TiO2, increasing both X-rays absorption and oxygen vacancies. The as-prepared TiO2:Bi nanosensitizers indicated high ionizing radiation energy-transfer efficiency and photocatalytic activity, resulting in efficient electron–hole pair separation and reactive oxygen species production. After further modification with cancer cell targeting peptide, the obtained nanoplatform demonstrated good performance in U87MG cell uptakes and intracellular radicals-generation, severely damaging the vital subcellular organs of U87MG cells, such as mitochondrion, membrane lipid, and nuclei etc. These combined therapeutic actions mediated by the composition-tunable nanosensitizers significantly inhibited the U87MG tumor growth, providing a refreshing strategy for X-ray induced dynamic therapy of malignant tumors.
Objective. To investigate the effect of stereotactic radiotherapy (SBRT) combined with thermoplastic fixation on set-up error in breast cancer (BC) patients undergoing radiotherapy. Methods. Ninety BC patients undergoing radiotherapy who were treated in our hospital (May 2019-May 2020) were selected as the research objects and equally divided into the experimental group and control group according to the order of hospitalization, with 45 patients in each group. The control group received conventional radiotherapy combined with breast bracket, and the experimental group received SBRT combined with thermoplastic fixation. The incidences of adverse reactions, 1-year survival rates, and set-up errors were compared between the two groups. Results. Compared with the control group, the experimental group had much lower total incidence of adverse reactions and remarkably higher 1-year survival rate. The translational errors ( X direction, Y direction, and Z direction), translational errors after rotation ( X direction, Y direction, and Z direction), and rotation errors ( X direction, Y direction, and Z direction) in the experimental group were obviously lower compared with those in the control group. Conclusion. Implementing SBRT combined with thermoplastic fixation in BC patients undergoing radiotherapy can effectively improve set-up efficiency and treatment accuracy and reduce set-up errors. Compared with the breast bracket, the combination of SBRT and thermoplastic fixation has higher application value, and further studies are conducive to providing patients with a better solution plan.
Radiation therapy is one of the most commonly used methods in clinical cancer treatment, and radiosensitizers could achieve enhanced therapeutic efficacy by incorporating heavy elements into structures. However, the secondary excitation of these high-Z elements-doped nanosensitizers still imply intrinsic defects of low efficiency. Herein, we designed Bi-doped titanium dioxide nanosensitizers in which high-Z Bi ions with adjustable valence state (Bi3+ or Bi4+) replaced some positions of Ti4+ of anatase TiO2, increasing both X-rays absorption and oxygen vacancies. The as-prepared TiO2:Bi nanosensitizers indicated high ionizing radiation energy-transfer efficiency and photocatalytic activity, resulting in efficient electron-hole pair separation and reactive oxygen species production. After further modification with cancer cell targeting peptide, the obtained nanoplatform demonstrated good performance in U87MG cell uptakes and intracellular radicals-generation, severely damaging the vital subcellular organs of U87MG cells, such as mitochondrion, membrane lipid, and nuclei etc. These combined therapeutic actions mediated by the composition-tunable nanosensitizers significantly inhibited the U87MG tumor growth, providing a refreshing strategy for X-ray induced dynamic therapy of malignant tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.