Pepper is a humanoid robot that just embeds the few computational resources for controlling its sensors and actuators, and is not capable of handling big amounts of data or performing in parallel complicate tasks. Aiming at enriching its functionalities and its interaction with the environment, the robot has been put in communication with a plethora of satellite smart objects and services ranging from simple environmental sensors, up to deep learning enhanced smart cameras. The addition of biometric, emotional, social, machine learning and other capabilities to Pepper, while enabling advanced functionalities and additional instruments for controlling users and the environment, raises security and, obviously, privacy concerns. The robot itself, its interaction with the environment and every weakness exposed by the smart objects involved in its ecosystem, may represent an exploit point for attacking the smart home and threaten security and privacy. Aiming at preventing attacks and strengthen security, each action with the system is evaluated against the entire context, as detected by the entire eco-system of smart-objects. This paper describes and analyses the experience and how the semantic trust model adopted mitigates the effects of weaknesses and the risks related to smart home cyber-attacks.INDEX TERMS Social robots, human-robot interaction, Internet of Things, ontologies, trust model, Pepper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.