Using a functional mitochondrial oxoglutarate carrier mutant devoid of Cys residues (C-less carrier), each amino acid residue in transmembrane domain IV and flanking hydrophilic loops (from T179 to S205) was replaced individually with Cys. The great majority of the 27 mutants exhibited significant oxoglutarate transport in reconstituted liposomes as compared to the activity of the C-less carrier. In contrast, Cys substitution for G183, R190, Q198, and Y202, in either C-less or wild-type carriers, yielded molecules with complete loss of oxoglutarate transport activity. G183 and R190 could be partially replaced only by Ala and Lys, respectively, whereas Q198 and Y202 were irreplaceable with respect to oxoglutarate transport. Of the single-Cys mutants tested, only T187C, A191C, V194C, and N195C were strongly inactivated by N-ethylmaleimide and by low concentrations of methanethiosulfonate derivatives. Oxoglutarate protects Cys residues at positions 187, 191, and 194 against reaction with N-ethylmaleimide. These positions as well as the residues found to be essential for the carrier activity, except Y202 which is located in the extramembrane loop IV-V, reside on the same face of transmembrane helix IV, probably lining part of a water-accessible crevice or channel between helices of the oxoglutarate carrier.
Background: Substrate binding and transport mechanisms of mitochondrial carriers are inadequately understood. Results: The effect of mutations on substrate specificity and transport activity was assessed in two human ornithine carrier isoforms.
Conclusion:The substrate specificity and transport rate of the two isoforms are defined by a few residues and can be swapped. Significance: The results show how small substrates can trigger transport in carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.