Using a functional mitochondrial oxoglutarate carrier mutant devoid of Cys residues (C-less carrier), each amino acid residue in transmembrane domain IV and flanking hydrophilic loops (from T179 to S205) was replaced individually with Cys. The great majority of the 27 mutants exhibited significant oxoglutarate transport in reconstituted liposomes as compared to the activity of the C-less carrier. In contrast, Cys substitution for G183, R190, Q198, and Y202, in either C-less or wild-type carriers, yielded molecules with complete loss of oxoglutarate transport activity. G183 and R190 could be partially replaced only by Ala and Lys, respectively, whereas Q198 and Y202 were irreplaceable with respect to oxoglutarate transport. Of the single-Cys mutants tested, only T187C, A191C, V194C, and N195C were strongly inactivated by N-ethylmaleimide and by low concentrations of methanethiosulfonate derivatives. Oxoglutarate protects Cys residues at positions 187, 191, and 194 against reaction with N-ethylmaleimide. These positions as well as the residues found to be essential for the carrier activity, except Y202 which is located in the extramembrane loop IV-V, reside on the same face of transmembrane helix IV, probably lining part of a water-accessible crevice or channel between helices of the oxoglutarate carrier.
In this study we investigated the interaction of salmon and human calcitonin (Ct) with artificial lipid bilayer membranes. Both peptides were able to form either transient or permanent channels in the model membranes. The channels formed by salmon Ct at concentration (125 nM) had, on average, a single-channel conductance of 0.58 +/- 0.04 nS in 1M KCl (+10 mV), which is voltage-dependent at lower voltages. Human Ct forms at the same concentration channels with a much lower probability, and high voltages of up to +150 mV were needed to initiate channel formation. The estimated single-channel conductance formed under these conditions was approximately 0.0119 +/- 0.0003 nS in 1 M KCl. Both salmon and human Ct channels were found to be permeable to calcium ions. The possibility is discussed that the superior therapeutic effect of salmon Ct as a tool to treat bone disorders, including Paget disease, osteoporosis, and hypercalcemia of malignancy, rather than human Ct is related to the lack of the fibrillating property of salmon Ct. Preliminary data indicate that also eel and porcine Ct and carbocalcitonin form channels in model membranes.
The structural and dynamic features of the fourth transmembrane segment of the mitochondrial oxoglutarate carrier were investigated using site-directed spin labeling and electron paramagnetic resonance (EPR). Using a functional carrier protein with native cysteines replaced with serines, the 18 consecutive residues from S184 to S201 which are believed to form the transmembrane segment IV were substituted individually with cysteine and labeled with a thiol-selective nitroxide reagent. Most of the labeled mutants exhibited significant oxoglutarate transport in reconstituted liposomes, where they were examined by EPR as a function of the incident microwave power in the presence and absence of two paramagnetic perturbants, i.e., the hydrophobic molecular oxygen or the hydrophilic chromium oxalate complex. The periodicity of the sequence-specific variation in the spin-label mobility and the O(2) accessibility parameters unambiguously identifies the fourth transmembrane segment of the mitochondrial oxoglutarate carrier as an alpha-helix. The accessibility to chromium oxalate is out of phase with oxygen accessibility, indicating that the helix is amphipatic, with the hydrophilic face containing the residues found to be important for transport activity by site-directed mutagenesis and chemical modification. The helix is strongly packed, as indicated by the values of normalized mobility, which also suggest that the conformational changes occurring during transport probably involve the N-terminal region of the helix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.