Promising applications of liquid crystal nanocomposites have driven extensive efforts to achieve non-volatile memory effects for the realization of electronic storage devices. In this context, non-volatile memory effects in an orthoconic smectic liquid crystal mixture, with and without polymer capped gold nanoparticles, were investigated. The dielectric spectroscopy technique was performed by applying a d.c. bias during the measurement or a d.c. potential before the start of the measurement in order to obtain pre-conditioning of the sample. Both techniques showed the presence of non-volatile memory effects in the pure orthoconic smectic liquid crystal mixture similar to the doped one. The results demonstrate that the addition of gold nanoparticles enhances the memory effect making it permanent. Our experimental evidence underlines the importance of the structure of the host liquid crystal and clearly suggests that the prolonged time memory effect, observed in the doped liquid crystal, is due to the electric field inducing charge transfer from the liquid crystal molecules to the gold nanoparticles, thanks to the polymer-capping which acts as an ionic charge trapper. Such an ionic trap effect is also responsible for strong reduction of total conductivity of the doped system.
Dielectric measurements on a bent-core liquid crystal were carried out in the frequency range from 10 mHz to 100 kHz in planar aligned cells. Four relaxation ranges were detected during heating condition: two in a low frequency range of a few hertz probably due to conductivity and interface relaxation phenomena, another between 10 and 20 Hz, and another one in a range between 10 kHz and 100 kHz in smectic as in nematic and isotropic phases. The third relaxation response is no more visible during cooling conditions. Dielectric increments, distribution parameters, and relaxation frequencies have been evaluated at different temperatures by fitting data with Havriliak-Negami (H-N) relaxation function, which is an empirical modification of the Debye relaxation model. The presence of a relaxation response between 10 and 20 Hz and the relatively great values of the permittivity could suggest the presence of a ferroelectric response due to the presence of cybotactic clusters.
Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.