A cluster of imprinted genes at chromosome 11p15.5 is associated with the growth disorders, Silver–Russell syndrome (SRS) and Beckwith–Wiedemann syndrome (BWS). The cluster is divided into two domains with independent imprinting control regions (ICRs). We describe two maternal 11p15.5 microduplications with contrasting phenotypes. The first is an inverted and in cis duplication of the entire 11p15.5 cluster associated with the maintenance of genomic imprinting and with the SRS phenotype. The second is a 160 kb duplication also inverted and in cis, but resulting in the imprinting alteration of the centromeric domain. It includes the centromeric ICR (ICR2) and the most 5′ 20 kb of the non-coding KCNQ1OT1 gene. Its maternal transmission is associated with ICR2 hypomethylation and the BWS phenotype. By excluding epigenetic mosaicism, cell clones analysis indicated that the two closely located ICR2 sequences resulting from the 160 kb duplication carried discordant DNA methylation on the maternal chromosome and supported the hypothesis that the ICR2 sequence is not sufficient for establishing imprinted methylation and some other property, possibly orientation-dependent, is needed. Furthermore, the 1.2 Mb duplication demonstrated that all features are present for correct imprinting at ICR2 when this is duplicated and inverted within the entire cluster. In the individuals maternally inheriting the 160 kb duplication, ICR2 hypomethylation led to the expression of a truncated KCNQ1OT1 transcript and to down-regulation of CDKN1C. We demonstrated by chromatin RNA immunopurification that the KCNQ1OT1 RNA interacts with chromatin through its most 5′ 20 kb sequence, providing a mechanism likely mediating the silencing activity of this long non-coding RNA.
H1069Q substitution represents the most frequent mutation of the copper transporter ATP7B causing Wilson disease in Caucasian population. ATP7B localizes to the Golgi complex in hepatocytes but moves in response to copper overload to the endo-lysosomal compartment to support copper excretion via bile canaliculi. In heterologous or hepatoma-derived cell lines, overexpressed ATP7B-H1069Q is strongly retained in the ER and fails to move to the post-Golgi sites, resulting in toxic copper accumulation. However, this pathogenic mechanism has never been tested in patients’ hepatocytes, while animal models recapitulating this form of WD are still lacking. To reach this goal, we have reprogrammed skin fibroblasts of homozygous ATP7B-H1069Q patients into induced pluripotent stem cells and differentiated them into hepatocyte-like cells. Surprisingly, in HLCs we found one third of ATP7B-H1069Q localized in the Golgi complex and able to move to the endo-lysosomal compartment upon copper stimulation. However, despite normal mRNA levels, the expression of the mutant protein was only 20% compared to the control because of endoplasmic reticulum-associated degradation. These results pinpoint rapid degradation as the major cause for loss of ATP7B function in H1069Q patients, and thus as the primary target for designing therapeutic strategies to rescue ATP7B-H1069Q function.
The microphthalmia with linear skin defects (MLS) syndrome (MIM 309801) is a severe and rare developmental disorder, which is inherited as an X-linked dominant trait with male lethality. In the vast majority of patients, this syndrome is associated with terminal deletion of the Xp22.3 region. Thirty-five cases have been described to date in the literature since the first description of the syndrome in the early 1990s. We now report on the clinical, cytogenetic, and molecular characterization of 11 patients, 7 of whom have not been described previously. Seven of these patients have chromosomal abnormalities of the short arm of the X-chromosome, which were characterized and defined by fluorescence in situ hybridization (FISH) analysis. Intriguingly, one of the patients displays an interstitial Xp22.3 deletion, which to the best of our knowledge is the first reported for this condition. Finally we report on the identification and molecular characterization of four cases with clinical features of MLS but apparently normal karyotypes, verified by FISH analysis using genomic clones spanning the MLS minimal critical region, and with genome-wide analysis using a 1 Mb resolution BAC microarray. These patients made it possible to undertake mutation screening of candidate genes and may prove critical for the identification of the gene responsible for this challenging and intriguing genetic disease.
Human embryo stem cells or adult tissues are excellent models for discovery and characterization of differentiation processes. The aims of regenerative medicine are to define the molecular and physiological mechanisms that govern stem cells and differentiation. Human mesenchymal stem cells (hMSCs) are multipotent adult stem cells that are able to differentiate into a variety of cell types under controlled conditions both in vivo and in vitro, and they have the remarkable ability of self-renewal. hMSCs derived from amniotic fluid and characterized by the expression of Oct-4 and Nanog, typical markers of pluripotent cells, represent an excellent model for studies on stemness. Unfortunately, the limited amount of cells available from each donation and, above all, the limited number of replications do not allow for detailed studies. Here, we report on the immortalization and characterization of novel mesenchymal progenitor (MePR) cell lines from amniotic fluid-derived hMSCs, whose biological properties are similar to primary amniocytes. Our data indicate that MePR cells display the multipotency potential and differentiation rates of hMSCs, thus representing a useful model to study both mechanisms of differentiation and pharmacological approaches to induce selective differentiation. In particular, MePR-2B cells, which carry a bona fide normal karyotype, might be used in basic stem cell research, leading to the development of new approaches for stem cell therapy and tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.