COVID‐19 is highly contagious pathogenic viral infection initiated from Wuhan seafood wholesale market of China on December 2019 and spread rapidly around the whole world due to onward transmission. This recent outbreak of novel coronavirus (CoV) was believed to be originated from bats and causing respiratory infections such as common cold, dry cough, fever, headache, dyspnea, pneumonia, and finally Severe Acute Respiratory Syndrome (SARS) in humans. For this widespread zoonotic virus, human‐to‐human transmission has resulted in nearly 83 lakh cases in 213 countries and territories with 4,50,686 deaths as on 19 June 2020. This review presents a report on the origin, transmission, symptoms, diagnosis, possible vaccines, animal models, and immunotherapy for this novel virus and will provide ample references for the researchers toward the ongoing development of therapeutic agents and vaccines and also preventing the spread of this disease.
In this study, we examined five previously synthesized compounds and checked their binding affinity towards the SARS-CoV-2 main protease (M
pro
) by molecular docking study, and compared the data with three FDA approved drugs, i.e., Remdesivir, Ivermectine and Hydroxychlorochine. In addition, we have investigated the docking study against the main protease of SARS-CoV-2 (M
pro
) by using Autodock 4.2 software package. The results suggested that the investigated compounds have property to bind the active position of the protein as reported in approved drugs. Hence, further experimental studies are required. The formation of intermolecular interactions, negative values of scoring functions, free binding energy and the calculated binding constants confirmed that the studied compounds have significant affinity for the specified biotarget. These studied compounds were passed the drug-likeness criteria as suggested by calculating ADME data by SwissADME server. Moreover, the ADMET properties suggested that the investigated compounds to be orally active compounds in human. Furthermore, density functional computations (DFT) were executed by applying GAUSSIAN 09 suit program. In addition,
Quantitative Structure-Activity Relationship
(QSAR) was studied by applying HyperChem Professional 8.0.3 program.
A novel series of binuclear complexes with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) ions derived from a pentadentate azo dye ligand (H 3 L) was synthesized and structurally investigated by various physicochemical analyses, namely, scanning electron microscopy, transmission electron microscopy, NMR, UV-visible spectroscopy, and Electron-Spin Resonance (ESR) studies. The infrared spectral data revealed characteristic bands due to ν(N=N) and ν(C=O) at 1606 and 1631 cm −1 in the free ligand. However, their positions shifted and appeared at~1564 and~1592 cm −1 on coordination, suggesting the involvement of carbonyl oxygen and azo nitrogen in complex formation. The spectral data suggested octahedral geometry for the complexes. The kinetic parameters such as order and activation energy were determined from the thermal decomposition values. X-ray powder diffraction analysis showed the orthorhombic nature of the cadmium complex. Furthermore, Density functional theory (DFT) calculations were also recorded to describe the insight bonding. The synthesized compounds were tested for in vitro antibacterial activity against K. aerogenes, S. aureus, B. acidoterrestris, E. coli, and V. cholerae strains by the cup-plate method. In addition, the interactions that occurred in the protein-ligand complexes have been predicted by docking analysis.
The increasing threat of antimicrobial resistance to all currently available therapeutic agents has urged the development of novel antimicrobials. In this context, a series of new benzoylthiourea derivatives substituted with one or more fluorine atoms and with the trifluoromethyl group have been tested, synthesized, and characterized by IR, NMR, CHNS and crystal X-ray diffraction. The molecular docking has provided information regarding the binding affinity and the orientation of the new compounds to Escherichia coli DNA gyrase B. The docking score predicted the antimicrobial activity of the studied compounds, especially against E. coli, which was further demonstrated experimentally against planktonic and biofilm embedded bacterial and fungal cells. The compounds bearing one fluorine atom on the phenyl ring have shown the best antibacterial effect, while those with three fluorine atoms exhibited the most intensive antifungal activity. All tested compounds exhibited antibiofilm activity, correlated with the trifluoromethyl substituent, most favorable in para position.
Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans’ theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski’s and Weber’s rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.