Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a severe pandemic of the current century. The vicious tentacles of the disease have been disseminated worldwide with unknown complications and repercussions. Advanced COVID-19 syndrome is characterized by the uncontrolled and elevated release of pro-inflammatory cytokines and suppressed immunity, leading to the cytokine storm. The uncontrolled and dysregulated secretion of inflammatory and pro-inflammatory cytokines is positively associated with the severity of the viral infection and mortality rate. The secretion of various pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6 leads to a hyperinflammatory response by recruiting macrophages, T and B cells in the lung alveolar cells. Moreover, it has been hypothesized that immune cells such as macrophages recruit inflammatory monocytes in the alveolar cells and allow the production of large amounts of cytokines in the alveoli, leading to a hyperinflammatory response in severely ill patients with COVID-19. This cascade of events may lead to multiple organ failure, acute respiratory distress, or pneumonia. Although the disease has a higher survival rate than other chronic diseases, the incidence of complications in the geriatric population are considerably high, with more systemic complications. This review sheds light on the pivotal roles played by various inflammatory markers in COVID-19-related complications. Different molecular pathways, such as the activation of JAK and JAK/STAT signaling are crucial in the progression of cytokine storm; hence, various mechanisms, immunological pathways, and functions of cytokines and other inflammatory markers have been discussed. A thorough understanding of cytokines’ molecular pathways and their activation procedures will add more insight into understanding immunopathology and designing appropriate drugs, therapies, and control measures to counter COVID-19. Recently, anti-inflammatory drugs and several antiviral drugs have been reported as effective therapeutic drug candidates to control hypercytokinemia or cytokine storm. Hence, the present review also discussed prospective anti-inflammatory and relevant immunomodulatory drugs currently in various trial phases and their possible implications.
Highlights
Omicron has shown immune escape from neutralizing antibodies generated through previous infection or vaccination.
It could evade the protection provided by mAbs being used in clinics for treating coronavirus disease 2019 (COVID‐19) patients.
Booster dose is recommended to elevate the protective levels of antibodies in COVID‐19 vaccinated individuals.
The development of powerful oral antiviral drugs such as Molnupiravir and Paxlovid have shown promising clinical results and raised new hopes of COVID‐19 treatment.
High efforts are being made to develop highly efficacious vaccines, and by implementing appropriate prevention and control strategies to counter Omicron.
COVID‐19 is highly contagious pathogenic viral infection initiated from Wuhan seafood wholesale market of China on December 2019 and spread rapidly around the whole world due to onward transmission. This recent outbreak of novel coronavirus (CoV) was believed to be originated from bats and causing respiratory infections such as common cold, dry cough, fever, headache, dyspnea, pneumonia, and finally Severe Acute Respiratory Syndrome (SARS) in humans. For this widespread zoonotic virus, human‐to‐human transmission has resulted in nearly 83 lakh cases in 213 countries and territories with 4,50,686 deaths as on 19 June 2020. This review presents a report on the origin, transmission, symptoms, diagnosis, possible vaccines, animal models, and immunotherapy for this novel virus and will provide ample references for the researchers toward the ongoing development of therapeutic agents and vaccines and also preventing the spread of this disease.
Disinfectants and sanitizers are essential preventive agents against the coronavirus disease 2019 (COVID-19) pandemic; however, the pandemic crisis was marred by undue hype, which led to the indiscriminate use of disinfectants and sanitizers. Despite demonstrating a beneficial role in the control and prevention of COVID-19, there are crucial concerns regarding the large-scale use of disinfectants and sanitizers, including the side effects on human and animal health along with harmful impacts exerted on the environment and ecological balance. This article discusses the roles of disinfectants and sanitizers in the control and prevention of the current pandemic and highlights updated disinfection techniques against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This article provides evidence of the deleterious effects of disinfectants and sanitizers exerted on humans, animals, and the environment as well as suggests mitigation strategies to reduce these effects. Additionally, potential technologies and approaches for the reduction of these effects and the development of safe, affordable, and effective disinfectants are discussed, particularly, eco-friendly technologies using nanotechnology and nanomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.