We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens.
Global compilations indicate that the geochemistry of arc magmatism is sensitive to Moho depth. Magmatic products are prevalent throughout the history of Cordilleran orogenesis and can be employed to constrain the timing of changes in crustal thickness as well as the magnitude of those changes. We investigate temporal variations in crustal thickness in the United States Cordillera using Sr/Y from intermediate continental arc magmas. Our results suggest that crustal thickening began during the Late Jurassic to Early Cretaceous and culminated with 55-65-km-thick crust at 85-95 Ma. Crustal thicknesses remained elevated until the mid-Eocene to Oligocene, after which time crustal thicknesses decreased to 30-40 km in the Miocene. The results are consistent with independent geologic constraints and suggest that Sr/Y is a viable method for reconstructing crustal thickness through time in convergent orogenic systems. 1 GSA Data Repository item 2015308, Figure DR1 (unfiltered Great Basin rock analyses with proposed data filters); Table DR1 (Great Basin geochemical data); Table DR2 (accepted Great Basin data subsets by area); Table DR3 (discarded Great Basin data subsets by area); Table DR4 (global geochemical data for Quaternary rock analyses); and Table DR5 (compiled global geochemical data by arc),
Reconstructing orogenic systems made up dominantly by sediments accreted in trenches is challenging because of the incomplete lithological record of the subducted oceanic domain and its attached passive continental margin thrusted by collisional processes. In this respect, the remarkable ~600 km long continuity of sediments exposed in the Eastern Carpathian thin‐skinned thrust and fold belt and the availability of quantitative reconstructions for adjacent continental units provide excellent conditions for a paleogeographical study by provenance and sedimentological techniques constraining sediment routing and depositional systems. These sediments were deposited in the Ceahlău‐Severin branch of the Alpine Tethys Ocean and over its European passive continental margin. We report sedimentological, paleomagnetic, petrographic, and detrital zircon U‐Pb data of Lower Cretaceous sediments from several thin‐skinned tectonic units presumably deposited in the Moldavides domain of the Eastern Carpathians. Sedimentological observations in the innermost studied unit demonstrate that deposition took place in a deepwater basin floor sheets to sandy turbidite system. Detrital zircon age data demonstrate sourcing from internal Carpathian basement units. The sediment routing changes in more external units, where black shales basin floor sheets to sandy mud turbidites were sourced from an external, European continental area. Although some degree of mixing between sources located on both margins of the ocean occurred, constraining a relatively narrow width of the deep oceanic basin, these results demonstrate that the internal‐most studied unit was deposited near an Early Cretaceous accretionary wedge, located on the opposite internal side relative to the passive continental margin domain of other Moldavides units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.