Abstract:In this paper we tried to present a qualitative correlation, based on extensive experimental determinations between the value and the evolution of the friction coefficient, wear, and contact temperature, in the case of linear dry contact, for thermoplastic material reinforced with short glass fibers (SGF) and various steel surfaces. The aim was to highlight the evolution of the wear process depending on the evolution of the friction coefficient. As a result, it was possible to graphically illustrate the evolution of the friction coefficient and the change of the wear process, emphasizing the abrasive, adhesive and corrosive wear. The evolution of the plastic material transfer function of the contact temperature, namely of the power lost by friction (product between the contact pressure and sliding speed, p and v) was aimed and it was highlighted. It has been demonstrated that in the case of a 30% SGF content it can reach and even exceed contact temperatures very close to the flow limit of the plastic material. We tried, believing successfully, the graphic illustration of the evolution of the steel surface wear and of the contact temperature, depending on the friction coefficient. The influence of the normal load and sliding speed was evaluated in detail, but also the influence of the metallic surface roughness on the friction coefficient was discussed.
Purpose
The purpose of this paper is to study the roughness effect on the fixation of taper junction components and surfaces wear in terms of taper surface design. The roughness of the femoral heads’ taper and of the femoral stems’ trunnions can influence the fretting wear of the taper junction.
Design/methodology/approach
It was analysed whether a microgrooved taper surface of the femoral stem trunnion improves the fixation and reduces the wear rate at the taper junction of the hip prosthesis. Two models have studied: a femoral head with a smooth tapered surface combined with a microgrooved stem trunnion and a femoral head with a smooth tapered surface combined with a trunnion that had a smooth surface of the tapered. To compare the wear evolution between these two models, a computerised finite element model of the wear was used.
Findings
The results obtained after analysis carried out during millions of loading cycles showed that the depth of the linear wear and the total material loss were higher for the femoral heads joined with microgrooved trunnions. The main conclusion of this paper is that the smooth surfaces of the taper and of the trunnions will ensure a better fixation at the taper junction, and therefore, will reduce the volumetric wear rates.
Originality/value
A higher fixation of the taper junction will reduce the total hip prosthesis failure and, finally, it will improve the quality and durability of modular hip prostheses.
Purpose
The purpose of this study was to realize finite element simulation in order to dynamically determine the area of the contact, the contact pressure and the strain energy density (identified as a damage function) for three different activities – normal walking, ascending stairs and descending stairs – that could be considered to define the level of the activity of the patient.
Design/methodology/approach
The finite element model uses a modern contact mechanism that includes friction between the metallic femoral condyles or femoral head (considered rigid) and the tibial polyethylene insert or acetabular cup (considering a non-linear behaviour).
Findings
For all three activities, the finite element analyses were performed, and a damage score was computed. Finally, a cumulative damage score (that accounts for all three activities) was determined, and the areas where the fatigue wear is likely to occur were identified.
Originality/value
A closer look at the distribution of the damage score reveals that the maximum damage is likely to occur not at the contact surface, but in the subsurface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.