This article reports on the formation and electronic characteristics of conducting carbon nanowires produced by swift heavy ion irradiation of a fullerene thin film. This study shows that it is possible to create arrays of carbon nanowires, which are perfectly parallel to each other and perpendicular to the substrate. As-deposited fullerene films exhibit poor field emission characteristics with breakdown fields as high as 51 V / m, whereas low dose ion irradiated fullerene film produces a threshold field as low as 9 V / m. The present approach of making conducting carbon nanowires by ion irradiation for potential field emitters and large area applications is also discussed.
A two-dimensional model of quasi-free-electrons is used to compute the electron axial distribution on a carbon nanotube and the energy distribution of the field emitted electrons. The nature of the substrate-nanotube contact is taken into account by varying the boundary condition for the electronic wave function. In qualitative agreement with the experimental results to date, regular patterns of the axial electron density and electron accumulation on the nanotube cap are obtained. The energy distribution of the field emitted electrons shows a multiple peak structure superimposed over a very fine distribution of maxima. Such a multiple peak structure is also qualitatively confirmed in experiments. The behavior of the distribution of the emitted electrons with the extraction voltage and with the operation temperature is investigated.
Here we report a ferroelectric capacitor structure obtained by alternating ferroelectric and insulator thin-film layers which allows an increase of up to 2 polarization states, with n the number of ferroelectric layers. Four and up to eight distinct, stable and independently addressed polarization states are experimentally demonstrated in this work. The experimental findings are supported by a theoretical model based on the Landau-Ginzburg-Devonshire theory. The key parameter is the change in the strain conditions of ferroelectric layers induced by the insulating separator. Notably, the 2 increase in the storage capacity can be achieved without major changes in the present technology used for FeRAM devices. The test structures demonstrate very good memory characteristics such as retention and fatigue, opening the way towards the design of high density ferroelectric memories.
Fe (acceptor) and Nb (donor) doped epitaxial Pb(Zr0.2Ti0.8)O3 (PZT) films were grown on single crystal SrTiO3 substrates and their electric properties were compared to those of un-doped PZT layers deposited in similar conditions. All the films were grown from targets produced from high purity precursor oxides and the doping was in the limit of 1% atomic in both cases. The remnant polarization, the coercive field and the potential barriers at electrode interfaces are different, with lowest values for Fe doping and highest values for Nb doping, with un-doped PZT in between. The dielectric constant is larger in the doped films, while the effective density of charge carriers is of the same order of magnitude. An interesting result was obtained from piezoelectric force microscopy (PFM) investigations. It was found that the as-grown Nb-doped PZT has polarization orientated upward, while the Fe-doped PZT has polarization oriented mostly downward. This difference is explained by the change in the conduction type, thus in the sign of the carriers involved in the compensation of the depolarization field during the growth. In the Nb-doped film the majority carriers are electrons, which tend to accumulate to the growing surface, leaving positively charged ions at the interface with the bottom SrRuO3 electrode, thus favouring an upward orientation of polarization. For Fe-doped film the dominant carriers are holes, thus the sign of charges is opposite at the growing surface and the bottom electrode interface, favouring downward orientation of polarization. These findings open the way to obtain p-n ferroelectric homojunctions and suggest that PFM can be used to identify the type of conduction in PZT upon the dominant direction of polarization in the as-grown films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.