Tenascin-X is an extracellular matrix protein whose absence leads to an Ehlers-Danlos Syndrome in humans, mainly characterised by connective tissue defects including the disorganisation of fibrillar networks, a reduced collagen deposition, and modifications in the mechanical properties of dense tissues. Here we tested the effect of tenascin-X on in vitro collagen fibril formation. We observed that the main parameters of fibrillogenesis were unchanged, and that the diameter of fibrils was not significantly different when they were formed in the presence of tenascin-X. Interestingly, mechanical analysis of collagen gels showed an increased compressive resistance of the gels containing tenascin-X, indicating that this protein might be directly involved in determinating the mechanical properties of collagen-rich tissues in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.