Background: Open source software has an increasing importance in modern software development. However, there is also a growing concern on the sustainability of such projects, which are usually managed by a small number of developers, frequently working as volunteers. Aims: In this paper, we propose an approach to identify GitHub projects that are not actively maintained. Our goal is to alert users about the risks of using these projects and possibly motivate other developers to assume the maintenance of the projects. Method:We train machine learning models to identify unmaintained or sparsely maintained projects, based on a set of features about project activity (commits, forks, issues, etc). We empirically validate the model with the best performance with the principal developers of 129 GitHub projects. Results: The proposed machine learning approach has a precision of 80%, based on the feedback of real open source developers; and a recall of 96%. We also show that our approach can be used to assess the risks of projects becoming unmaintained. Conclusions: The model proposed in this paper can be used by open source users and developers to identify GitHub projects that are not actively maintained anymore.
Co-change clusters are groups of classes that frequently change together. They are proposed as an alternative modular view, which can be used to assess the traditional decomposition of systems in packages. To investigate developer's perception of co-change clusters, we report in this paper a study with experts on six systems, implemented in two languages. We mine 102 co-change clusters from the version history of such systems, which are classified in three patterns regarding their projection to the package structure: Encapsulated, Crosscutting, and Octopus. We then collect the perception of expert developers on such clusters, aiming to ask two central questions: (a) what concerns and changes are captured by the extracted clusters? (b) do the extracted clusters reveal design anomalies? We conclude that Encapsulated Clusters are often viewed as healthy designs and that Crosscutting Clusters tend to be associated to design anomalies. Octopus Clusters are normally associated to expected class distributions, which are not easy to implement in an encapsulated way, according to the interviewed developers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.