Open source is experiencing a renaissance period, due to the appearance of modern platforms and workflows for developing and maintaining public code. As a result, developers are creating open source software at speeds never seen before. Consequently, these projects are also facing unprecedented mortality rates. To better understand the reasons for the failure of modern open source projects, this paper describes the results of a survey with the maintainers of 104 popular GitHub systems that have been deprecated. We provide a set of nine reasons for the failure of these open source projects. We also show that some maintenance practices-specifically the adoption of contributing guidelines and continuous integrationhave an important association with a project failure or success. Finally, we discuss and reveal the principal strategies developers have tried to overcome the failure of the studied projects.
Context: GitHub hosts an impressive number of high-quality OSS projects. However, selecting "the right tool for the job" is a challenging task, because we do not have precise information about those high-quality projects. Objective: In this paper, we propose a data-driven approach to measure the level of maintenance activity of GitHub projects. Our goal is to alert users about the risks of using unmaintained projects and possibly motivate other developers to assume the maintenance of such projects. Method: We train machine learning models to define a metric to express the level of maintenance activity of GitHub projects. Next, we analyze the historical evolution of 2,927 active projects in the time frame of one year. Results: From 2,927 active projects, 16% become unmaintained in the interval of one year. We also found that Objective-C projects tend to have lower maintenance activity than projects implemented in other languages. Finally, software toolssuch as compilers and editors-have the highest maintenance activity over time. Conclusions: A metric about the level of maintenance activity of GitHub projects can help developers to select open source projects.
Background: Open source software has an increasing importance in modern software development. However, there is also a growing concern on the sustainability of such projects, which are usually managed by a small number of developers, frequently working as volunteers. Aims: In this paper, we propose an approach to identify GitHub projects that are not actively maintained. Our goal is to alert users about the risks of using these projects and possibly motivate other developers to assume the maintenance of the projects. Method:We train machine learning models to identify unmaintained or sparsely maintained projects, based on a set of features about project activity (commits, forks, issues, etc). We empirically validate the model with the best performance with the principal developers of 129 GitHub projects. Results: The proposed machine learning approach has a precision of 80%, based on the feedback of real open source developers; and a recall of 96%. We also show that our approach can be used to assess the risks of projects becoming unmaintained. Conclusions: The model proposed in this paper can be used by open source users and developers to identify GitHub projects that are not actively maintained anymore.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.